Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1639-1644    https://doi.org/10.11896/j.issn.1005-023X.2018.10.013
  材料研究 |
0Cr25Ni7Mo4N双相不锈钢高温热塑性及组织演变
卢成壮1,李静媛1,高智君2,张泰然2,陈雨来2,王一德2
1 北京科技大学材料科学与工程学院,北京 100083;
2 北京科技大学冶金工程技术研究院,北京 100083
Thermoplasticity and Microstructure Evolution of Duplex Stainless Steel 0Cr25Ni7Mo4N Subjected to High-temperature Tensile Deformation
LU Chengzhuang1, LI Jingyuan1, GAO Zhijun2, ZHANG Tairan2, CHEN Yulai2, WANG Yide2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
2 Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 5896KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用热拉伸实验研究了两种不同元素(O、N)含量的双相不锈钢0Cr25Ni7Mo4N在1 000~1 200 ℃范围内、1 s-1应变速率条件下的热变形行为。利用光学显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)观察并分析了实验钢的组织和夹杂物。结果表明,经铝和硅铁脱氧后的实验钢热塑性良好,而未经脱氧的高O、N含量的实验钢在1 150 ℃以上才具有良好塑性,故双相不锈钢0Cr25Ni7Mo4N的热加工过程中应该控制温度在1 150 ℃以上;热加工过程中实验钢以铁素体的动态回复和奥氏体的动态再结晶为主要软化机制;高O、N含量钢中,在相界析出的含铬的氧化物夹杂引起的相界结合强度降低,及高温加工中不恰当的两相比例,是其热塑性较低的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢成壮
李静媛
高智君
张泰然
陈雨来
王一德
关键词:  0Cr25Ni7Mo4N双相不锈钢  高温热拉伸  热塑性  微观组织  夹杂物    
Abstract: The present work investigated the hot deformation behavior of two types of austenite-ferrite duplex stainless steels 0Cr25Ni7Mo4N, which differed in oxygen and nitrogen contents, via a hot tensile test within the temperature range of 1 000 ℃ to 1 200 ℃ and at the strain rate of 1 s-1. The microstructures and inclusions were determined by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the steel deoxidized by aluminum and ferrosilicon (i.e. steel with relatively low oxygen and nitrogen contents) performs favorable thermoplasticity, while the undeoxidized steel with more oxygen and nitrogen exhibits good thermoplasticity only at above 1 150 ℃. This indicated the hot working temperature should be controlled above 1 150 ℃. The softening mechanism during the hot working process is the recovery of ferrite and the dynamic recrystallization of austenite. It can be concluded that the reasons for the low thermoplasticity of high-O, N-content steel are: the decline of binding strength at phase boundary induced by the precipitated coarse oxide inclusions containing chromium; the inappropriate ratio of austenite and ferrite phase.
Key words:  0Cr25Ni7Mo4N duplex stainless steel    high-temperature tension    thermoplasticity    microstructure    inclusion
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG337.5  
  TG142.71  
基金资助: 国家自然科学基金(U1660114);国家重点研发计划(2016YFB0300200)
通讯作者:  李静媛:通信作者,女,1970年生,博士,教授,主要研究方向为不锈钢的设计与开发,特种材料制备与加工 E-mail:lijy@ustb.edu.cn   
作者简介:  卢成壮:男,1990年生,博士研究生,主要研究方向为不锈钢的设计与开发
引用本文:    
卢成壮,李静媛,高智君,张泰然,陈雨来,王一德. 0Cr25Ni7Mo4N双相不锈钢高温热塑性及组织演变[J]. 《材料导报》期刊社, 2018, 32(10): 1639-1644.
LU Chengzhuang, LI Jingyuan, GAO Zhijun, ZHANG Tairan, CHEN Yulai, WANG Yide. Thermoplasticity and Microstructure Evolution of Duplex Stainless Steel 0Cr25Ni7Mo4N Subjected to High-temperature Tensile Deformation. Materials Reports, 2018, 32(10): 1639-1644.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.013  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1639
1 吴玖,姜世振.双相不锈钢[M].北京:冶金工业出版社,1999.
2 Cui Z, Wang L, Ni H, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corrosion Science,2017,118:31.
3 Yu S R, Meng K, Li S X. Fatigue properties of duplex stainless steel SAF2507 under air and corrosive environments [J]. Journal of Materials Engineering,2015,43(1):77(in Chinese).
俞树荣,孟恺,李淑欣.空气和腐蚀环境下双相不锈钢SAF2507的疲劳性能[J].材料工程,2015,43(1):77.
4 Dehghan-Manshadi A, Hodgson P D. Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite [J]. Journal of Materials Science,2008,43(18):6272
5 Chen Y L, Zhang T R, Wang Y D, et al. Effect of O, N, and Ni contents on hot plasticity of 0Cr25Ni7Mo4N duplex stainless steel[J]. Acta Metallurgical Sinica,2014,50(8):905(in Chinese).
陈雨来,张泰然,王一德,等.O,N和Ni含量对0Cr25Ni7Mo4N双相不锈钢热轧塑性的影响[J].金属学报,2014,50(8):905.
6 Feng Z, Li J. Mechanism of hot-rolling crack formation in lean duplex stainless steel 2101[J]. International Journal of Minerals, Me-tallurgy, and Materials,2016,23(4):425.
7 Tavares S S M, De Noronha R F, Da Silva M R, et al. 475 C embrittlement in a duplex stainless steel UNS S31803[J]. Materials Research,2001,4(4):237.
8 Hernandez-Castillo L E, Beynon J H, Pinna C, et al. Micro-scale strain distribution in hot-worked duplex stainless steel[J]. Steel Research International,2005,76(2-3):137.
9 Park J Y, Ahn Y S. Effect of Ni and Mn on the mechanical properties of 22Cr micro-duplex stainless steel[J]. Acta Metallurgica Sinica (English Letters),2015,28(1):32.
10 Kingklang S, Uthaisangsuk V. Investigation of hot deformation behavior of duplex stainless steel grade 2507[J]. Metallurgical and Materials Transactions A,2017,48(1):95.
11 Evangelista E, McQueen H J, Niewczas M, et al. Hot workability of 2304 and 2205 duplex stainless steels[J]. Canadian Metallurgical Quarterly,2004,43(3):339.
12 Cizek P, Wynne B P. A mechanism of ferrite softening in a duplex stainless steel deformed in hot torsion[J]. Materials Science and Engineering: A,1997,230(1-2):88.
13 Pinol-Juez A, Iza-Mendia A, Gutierrez I. δ/γ Interface bondary sli-ding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel[J]. Metallurgical and Materials Transactions A,2000,31(6):1671.
14 Silverstein R, Eliezer D. Hydrogen trapping energy levels and hydrogen diffusion at high and low strain rates (~105 s-1 and 10-7 s-1) in lean duplex stainless steel [J]. Materials Science and Engineering: A,2016,674:419.
15 Martin G, Yerra S K, Bréchet Y, et al. A macro-and micromecha-nics investigation of hot cracking in duplex steels[J]. Acta Materialia,2012,60(11):4646.
16 Feng Z H, Li J Y, Wang Y D. Equilibrium solid solubility of nitrides in matrix of lean stainless steel 2101 [J]. Chinese Journal of Engineering,2016,38(12):1755(in Chinese).
冯志慧,李静媛,王一德.经济型双相不锈钢2101中氮化物在基体中的平衡固溶度计算[J].工程科学学报,2016,38(12):1755.
17 Song Z, Zheng W, Han F, et al. Hot ductility of DSS and Its microstructure observation during hot deformation[J]. Journal of Iron and Steel Research, International,2013,20(8):83.
18 刘雅政,任学平,王自东,等.材料成形理论基础[M].北京:国防工业出版社,2004.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[7] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[8] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[9] 阎格, 张慧娟, 蔡利海, 邵伟光, 刘文言. 燃料油与紫外光共同作用下热塑性聚氨酯结构与性能演变规律[J]. 材料导报, 2024, 38(6): 22050216-6.
[10] 王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
[11] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[12] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[13] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[14] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[15] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed