Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 45-49    https://doi.org/10.11896/j.issn.1005-023X.2017.06.010
  材料研究 |
介孔氧化铝的可控制备及优异除氟性能
许乃才1, 2, 3, 洪天增1, 3, 刘忠1, 张响飞1, 3, 董亚萍1, 李武1
1 中国科学院青海盐湖研究所, 西宁 810008;
2 青海师范大学化学系, 西宁 810008;
3 中国科学院大学, 北京 100049
Controllable Synthesis of Mesoporous Alumina with Excellent
Defluoridation Performance
XU Naicai1,2,3, HONG Tianzeng1,3, LIU Zhong1, ZHANG Xiangfei1,3, DONG Yaping1, LI Wu1
1 Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008;
2 Department of Chemistry,
Qinghai Normal University, Xining 810008;
3 University of Chinese Academy of Science, Beijing 100049
下载:  全 文 ( PDF ) ( 1609KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以偏铝酸钠(NaAlO2)和氯化铝(AlCl3·6H2O)为铝源,葡萄糖(C6H12O6·H2O)为模板剂,采用水热及高温焙烧技术制备了不同晶型的氧化铝。用X射线衍射(XRD)、扫描电镜(SEM)、N2吸附脱附(BET)对制备产物的晶型、形貌及孔结构进行了表征。研究了不同晶型氧化铝对F-的吸附性能,结果表明550 ℃条件下的煅烧产物γ-Al2O3对F-的吸附效果最佳。吸附等温线结果表明介孔γ-Al2O3吸附F-为单层吸附,其Langmuir最大吸附容量为5.96 mg/g。吸附动力学试验表明,介孔γ-Al2O3在5 min内已吸附超过90%的F-,且吸附过程与准二级动力学模型相吻合。介孔γ-Al2O3吸附F-的机理涉及OH-与F-的离子交换。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许乃才
洪天增
刘忠
张响飞
董亚萍
李武
关键词:  γ-Al2O3  介孔  吸附  氟离子去除  吸附动力学    
Abstract: A series of mesoporous alumina with different crystalline types were successfully synthesized by using hydrothermal and high temperature roasting technologies, which employed sodium aluminate and aluminium chloride as the aluminum source, and glucose as the template agent. Structures, morphologies and textural properties of the products were characterized by XRD,SEM and BET, and defluoridation effects of the synthesized mesoporous alumina with different crystalline types were investigated by batch adsorption experiments. The experimental results showed that γ-Al2O3 prepared at 550 ℃ calcination temperature exhibited the excellent performance for fluoride removal. The adsorption isotherm was better described by the linear Langmuir model with a maximum adsorption capacity of 5.96 mg/g. The adsorption kinetics experiments indicated a high fluoride adsorption rate, as more than 90% fluoride ions were adsorbed within 5 minute. In addition, the adsorption kinetics was well fitted with linear pseudo-second-order mo-del, with a correlation coefficient value (R2) of 0.992 1. According to the results of the present study, the adsorption mechanism may involve ion exchange between F- and OH-.
Key words:  γ-Al2O3    mesopore    adsorption    fluoride removal    adsorption kinetics
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51302280;51574186)
通讯作者:  李武:男,1966年生,博士研究生导师,研究员,研究方向为晶须材料的制备及应用,E-mail:liwu2016@126.com   
作者简介:  许乃才:男,1984年生,博士研究生,讲师,研究方向为无机功能材料的制备及应用,E-mail:xunc@qhnu.edu.cn
引用本文:    
许乃才, 洪天增, 刘忠, 张响飞, 董亚萍, 李武. 介孔氧化铝的可控制备及优异除氟性能[J]. 《材料导报》期刊社, 2017, 31(6): 45-49.
XU Naicai, HONG Tianzeng, LIU Zhong, ZHANG Xiangfei, DONG Yaping, LI Wu. Controllable Synthesis of Mesoporous Alumina with Excellent
Defluoridation Performance. Materials Reports, 2017, 31(6): 45-49.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.010  或          https://www.mater-rep.com/CN/Y2017/V31/I6/45
1 Amini M, Mueller K, Abbaspour K C, et al. Statistical modeling of global geogenic fluoride contamination ingroundwaters[J].Environ Sci Technol,2008,42(10):3662.
2 Hu C Y, Lo S L, Kuan W H, et al. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation [J]. Water Res,2005,39:895.
3 Jin H Y, Ji Z J, Yuan J, et al. Research on removal of fluoride in aqueous solution by alumina-modified expanded graphite composite [J]. J Alloys Compd,2015,620:361.
4 Meenakshi, Maheshwari R C. Fluoride in drinking water and its removal [J]. J Hazard Mater,2006,137:456.
5 Harrison P T C. Fluoride in water: A UK perspective [J]. J Fluorine Chem,2005,126:1448.
6 Huang K, Shao J G, Zhu H M, et al. Removal of fluoride from aqueoussolution onto Zr-loaded garlic peel (Zr-GP) particles [J]. J Cent South University,2011,18:1448.
7 Ji G J, Li M M, Li G H, et al. Hydrothermal synthesis of hierarchical micron flower-like γ-AlOOH and γ-Al2O3 superstructures from oil shale ash [J].Powder Technol,2012,215-216:54.
8 Peng C, Zhang J L, Xiong Z G,et al. Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation [J]. Micropor Mesopor Mater,2015,215:133.
9 Zhao G, Xia L, Zhong B, et al. Large-scale fast synthesis of single-crystalline alpha-alumina nanotubes [J]. Ceram Int,2015,41:2590.
10 Yang C, Gao L L, Wang Y X, et al. Fluoride removal by ordered and disordered mesoporous aluminas [J]. Microporous Mesoporous Mater,2014,197:156.
11 Wu Y C, Song Z Y, Yang Y, et al. Mechanism and control of α-phase transformation of alumina [J]. Chin J Rare Metals,2004,28(6):1043(in Chinese).
吴玉程, 宋振亚, 杨晔, 等. 氧化铝α相变及其相变控制的研究 [J]. 稀有金属,2004,28(6):1043.
12 Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chem Mater,2001,13(10):3169.
13 Huo Q S, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants: Supercage formation in a three-dimensional hexagonal array[J]. Science,1995,268(5215):1324.
14 Matos J R, Kruk M, Mercuri L P, et al. Ordered mesoporous silica with large cagelike pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time [J]. J Am Chem Soc,2003,125(3):821.
15 Wang S Y, Li X A, Wang S F, et al. Synthesis of γ-alumina via precipitation in ethanol [J]. Mater Lett,2008,62(20):3552.
16 Teng S X, Wang S G, Gong W X, et al. Removal of fluoride by hydrous manganese oxide-coated alumina: Performance and mechanism [J]. J Hazard Mater,2009,168:1004.
17 Tang D D, Zhang G K. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism [J]. Chem Eng J,2016,283:721.
18 Ma J Q, Shen Y, Shen C S, et al. Al-doping chitosan-Fe(Ⅲ) hydrogel for theremoval of fluoride from aqueous solutions [J].Chem Eng J,2014,248:98.
19 Chen N, Zhang Z Y, Feng C P, et al. Investigations on the batch and fixed-bedcolumn performance of fluoride adsorption by Kanuma mud [J].Desalination,2011,268:76.
20 Zhang G K, He Z L, Xu W. A low-cost and high efficientzirconium-modified-Na-attapulgite adsorbent for fluoride removal fromaqueous solutions [J].Chem Eng J,2012,183:315.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[3] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[4] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[5] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[6] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[7] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[8] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[9] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[10] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[11] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[12] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[13] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[14] 黄凌宇, 廖继飞, 张骞, 付艳, 肖文艳, 朱洁, 杨书镔. 蜂窝状介孔CuSiO3掺杂材料热催化分解NO的性能研究[J]. 材料导报, 2024, 38(19): 23090181-6.
[15] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed