Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23090181-6    https://doi.org/10.11896/cldb.23090181
  无机非金属及其复合材料 |
蜂窝状介孔CuSiO3掺杂材料热催化分解NO的性能研究
黄凌宇1,2, 廖继飞1,2, 张骞2,*, 付艳1,2, 肖文艳1,2, 朱洁1,2, 杨书镔1,2
1 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
2 西南石油大学新能源与材料学院新能源材料及技术研究中心,成都610500
Performance of CuSiO3-based Materials with Honeycomb Mesoporous Structure in Thermocatalytic Decomposition of NO
HUANG Lingyu1,2,LIAO Jifei1,2, ZHANG Qian2,*, FU Yan1,2, XIAO Wenyan1,2, ZHU Jie1,2, YANG Shubin1,2
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, University of Southwest Petroleum University, Chengdu 610500, China
2 The Center of New Energy Materials and Technology, School of New Energy and Materials, University of Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 19365KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热催化分解NO因具有无污染、经济等优点,已广泛用于汽车尾气、烟炉废气等NO废气处理过程。目前,获得中低温条件下保持高效催化活性的热催化材料成为NO热催化分解研究的关键。本工作以正硅酸乙酯为硅源,通过调控模板剂比例制备出了具有特殊介孔的SiO2,并利用水热法合成出了具有蜂窝状介孔的CuSiO3。实验结果表明,当模板剂物质的量比(CTAB/三乙胺)为1∶0.1时,CuSiO3热催化分解NO的活性最好,这归因于特殊的蜂窝状介孔。对活性最好的CuSiO3掺杂Co元素后,其在500 ℃下热催化分解NO的效率可达90%以上,4 h后仍能维持80%以上的催化分解效率。与未掺杂的CuSiO3相比,Co元素的存在导致掺杂后的催化材料结晶度发生改变,暴露了更多活性位点,还原性明显提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄凌宇
廖继飞
张骞
付艳
肖文艳
朱洁
杨书镔
关键词:  NO分解  蜂窝状介孔  热催化  硅酸铜    
Abstract: Thermocatalytic decomposition of NO has the advantages of zero pollution, economic cost-effectiveness and so on. It has become crucial for current research of NO thermocatalytic decomposition to develop catalysts which still maintain high activities within medium-low temperature range. Using tetraethyl orthosilicate as the silicon source, this work prepared SiO2 with special mesoporous structure by adjusting the template ratio, and further hydrothermally synthesized CuSiO3 with honeycomb mesoporous structure. Experimental results showed that by adjusting the template molar ratio (CTAB/triethylamine) to 1∶0.1, the highest catalytic activity of the produced CuSiO3 for NO decomposition could be achieved owing to its special honeycomb mesoporous structure. The dosage of Co into the most active CuSiO3 raised its NO thermocatalytic decomposition efficiency at 500 ℃ to over 90% which could maintain above 80% after 4 h usage. Compare to undoped CuSiO3, the presence of Co changed the crystallinity of the catalyst, resulting in more exposed active sites and improved reducibility.
Key words:  NO decomposition    honeycomb mesoporousity    thermocatalysis    copper silicate
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  X511  
基金资助: 四川省重大科技专项揭榜挂帅项目 (20222DZX0042)
通讯作者:  *张骞,通信作者,西南石油大学新能源与材料学院副教授、硕士研究生导师。2004于青岛科技大学获应用化学学士学位,2007年于山东理工大学获应用化学硕士学位,此后进入重庆大学材料科学与工程学院并于2011年获材料科学与工程专业博士学位。目前主要从事新型光催化材料、光电转换材料以及相关材料的同步辐射原位技术表征等科研工作。发表论文10余篇,专利3篇,包括Int.J.Hydrogen Energy、Int.J.Hydrogen Energy、Frontiers in Chemistry等。zhangqian@swpu.edu.cn   
作者简介:  黄凌宇,2021年6月于西南石油大学大学获得工学学士学位。现为西南石油大学新能源与材料学院硕士研究生,在张骞副教授的指导下进行研究。目前主要研究领域为氮氧化物的热催化分解。
引用本文:    
黄凌宇, 廖继飞, 张骞, 付艳, 肖文艳, 朱洁, 杨书镔. 蜂窝状介孔CuSiO3掺杂材料热催化分解NO的性能研究[J]. 材料导报, 2024, 38(19): 23090181-6.
HUANG Lingyu,LIAO Jifei, ZHANG Qian, FU Yan, XIAO Wenyan, ZHU Jie, YANG Shubin. Performance of CuSiO3-based Materials with Honeycomb Mesoporous Structure in Thermocatalytic Decomposition of NO. Materials Reports, 2024, 38(19): 23090181-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090181  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23090181
1 Anonymity. Road Traffic Management, 2023(1), 5(in Chinese).
佚名. 道路交通管理, 2023(1), 5.
2 Liu B. Environmental Science & Technology, 2001(4), 6 (in Chinese).
刘彬. 环境科学与技术, 2001(4), 6.
3 Wang T, Xue L, Brimblecombe P, et al. Science of the Total Environment, 2017, 575, 1582.
4 Wang X. Technology & Market, 2022, 29(9), 3 (in Chinese).
王新. 技术与市场, 2022, 29(9), 3.
5 Yu J J, Xiao P W, Yan X T, et al. Industrial & Engineering Chemistry Research, 2007, 46(17), 5794.
6 Beeckman J W, Hegedus L L. Industrial & Engineering Chemistry Research, 1991, 30(5), 969.
7 Ishihara T, Ando M, Sada K, et al. Journal of Catalysis, 2003, 200(1), 104.
8 Wise H, Frech M F. Journal of Chemical Physics, 1952, 20(1), 22.
9 Xie P, Ji W, Li Y, et al. Catalysis Science & Technology, 2021, 11(2), 374.
10 Shen Q, Dong S, Li S, et al. Catalysts, 2021, 11(5), 622.
11 Wan J Y, Yu L. Chemical Research and Application, 1999, 11(1), 5 (in Chinese).
万家义, 余林. 化学研究与应用, 1999, 11(1), 5.
12 Salem B, Katabathini N. Scientific Reports, 2020, 10(1), 518.
13 Cao S D, Hoang A N, Viet H L. Indian Academy of Sciences, 2022, 134, 122.
14 Bian Z F, Sibudjing K. Catalysis Today, 2020, 339, 3.
15 Pu Y Y. Preparation and application of chiral mesoporous silicas. Master's Thesis, Soochow University, China, 2011 (in Chinese).
蒲云月. 手性介孔二氧化硅的制备及应用. 苏州, 硕士学位论文, 苏州大学, 2011.
16 Zhang X D, Hou F L, Li H X, et al. Microporous and Mesoporous Materials, 2018, 259, 211.
17 Yue X, Xiang J H, Chen J Y, et al. Journal of Materials Science & Technology, 2022, 47, 223.
18 Katabathini N, Islam H A E M, Mohamed M. Applied Catalysis A:General, 2021, 616, 118100.
19 Vortmann S, Rius J, Siegmann S, et al. The Journal of Physical Chemistry B, 1997, 101(8), 1292.
20 Sing S W K, Everett D H, Hual R A W, et al. Pure & Applied Chemistry, 1985, 57(4), 603.
21 Huang X M, Ma M, Miao S, et al. Applied Catalysis A: General, 2016, 531, 79.
22 Costa P D, Moden B, Meitzner G D, et al. Physical Chemistry Chemical Physics, 2002, 4, 4590.
23 Iwamoto M, Yahiro H, Tanda K, et al. Journal of Physical Chemistry, 1991, 95(34), 3727.
24 Park S K, Kurshev V, Luan Z, et al. Microporous & Mesoporous Materials, 2000, 38(2-3), 255.
25 Torre-Abreu C, Ribeiro M F, Henriques C, et al. Applied Catalysis B: Environmental, 1997, 13(3-4), 251.
26 Qin X, Yin D J, Yu L Z, et al. China Environmental Science, 2020, 40(2), 591 (in Chinese).
秦萱, 尹德嘉, 余丽泽, 等. 中国环境科学, 2020, 40(2), 591.
27 Batsile M M, Phendukani N, Ndzondelelo B. Applied Catalysis B: Environmental, 2017, 218, 240.
28 Carla G M, Miguel A P, Jorge E S. Molecular Catalysis, 2020, 481, 110223.
29 Fang S, Takagaki A, Watanabe M, et al. Catalysis Science & Technology, 2020, 10, 2513.
30 Meng Z, Wang C, Wang X, et al. Royal Society of Chemistry Advance, 2020, 10, 8207.
31 Zhang Y, Wang L, Li J, et al. Chinese Journal of Catalysis, 2016, 37, 1918.
32 Shelef M. Catalysis Letters, 1992, 15, 305.
[1] 李松琦, 曲家福, 胡俊蝶, 杨晓刚, 李长明. 光热催化二氧化碳还原合成高附加值化学品的研究进展[J]. 材料导报, 2023, 37(22): 22050159-8.
[2] 宋绍意, 黎学明, 杨文静, 何苗, 倪婕, 简燕, 曾旭钟. 可催化高氯酸钠热分解的三维微纳多孔铜的合成[J]. 材料导报, 2023, 37(12): 21080141-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed