Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 25-28    https://doi.org/10.11896/j.issn.1005-023X.2017.06.006
  材料研究 |
富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2的Zn2+掺杂改性
吴汉杰, 梁兴华
广西科技大学广西汽车零部件与整车技术重点实验室, 柳州 545006
Modification of Li-rich Manganese Cathode Material Li1.2Ni0.13Co0.13Mn0.54O2
by Zinc-ion Doping
WU Hanjie, LIANG Xinghua
Guangxi Key Laboratory of Automobile Components and Vehicle Technology, Guangxi University of Science and
Technology, Liuzhou 545006
下载:  全 文 ( PDF ) ( 1367KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高温固相合成法制备富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54-xZnxO2(x = 0, 0.03, 0.06, 0.10),Zn2+掺杂对Li1.2Ni0.13Co0.13Mn0.54O2的表面特性和电化学性能都有影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱分析、充放电测试、倍率特性测试、循环性能测试,分析了该合成材料的晶体结构、形貌特征、微观结构和电化学性能。富锂锰基正极材料为a-NaFeO2层状结构,R-3m空间群,结晶度高,结构稳定性好,其中Li1.2Ni0.13Co0.13Mn0.48Zn0.06O2的电化学性能较好。掺杂Zn2+可以提高富锂锰基正极材料的充放电比容量、倍率性能、循环性能等电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴汉杰
梁兴华
关键词:  Li1.2Ni0.13Co0.13Mn0.54O2  掺杂  锌离子  富锂锰基正极材料    
Abstract: A series of Li-rich manganese cathode materials Li1.2Ni0.13Co0.13Mn0.54-xZnxO2(x=0, 0.03, 0.06, 0.10) were synthesized through a high temperature solid state route, and influences of Zn2+ doping on surface property and electrochemical performance of the layered Li1.2Ni0.13Co0.13Mn0.54O2 were studied. X-ray diffractometry (XRD), scanning electron microscopy (SEM), Raman spectroscopy, charge-discharge measurements and electrochemical impedance spectroscopy were adopted to analyze and determine the crystal structures, appearance characteristics, microstructures and electrochemical performances of the synthesized catho-des. The as-synthesized Li-rich manganese cathode materials are a-NaFeO2 layered structure,which belongs to R-3m space group, with high crystallinity and structural stability. The electrochemical performance of Li1.2Ni0.13Co0.13Mn0.48Zn0.06O2 was better than the other cathodes. We proved that Zn2+ doping can improve the electrochemical properties of Li-rich manganese cathode material, such as charge and discharge specific capacity, rate performance and cycling performance.
Key words:  Li1.2Ni0.13Co0.13Mn0.54O2    doping    zinc ion    Li-rich manganese cathode material
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TM911  
基金资助: 2015年广西汽车零部件与整车技术重点实验室开放课题(2015KFZD02);2015年广西汽车零部件与整车技术重点实验室自主研究课题(15-A-03-01);广西科技大学研究生教育创新计划项目(GKYC201617)
作者简介:  吴汉杰:男,1991年生,硕士研究生,主要研究方向为汽车动力电池及材料,E-mail:wuhanjie999@163.com 梁兴华:男,1973年生,博士,副教授,主要研究方向为锂离子电池及材料,E-mail:liangxinghua888@163.com
引用本文:    
吴汉杰, 梁兴华. 富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2的Zn2+掺杂改性[J]. 《材料导报》期刊社, 2017, 31(6): 25-28.
WU Hanjie, LIANG Xinghua. Modification of Li-rich Manganese Cathode Material Li1.2Ni0.13Co0.13Mn0.54O2
by Zinc-ion Doping. Materials Reports, 2017, 31(6): 25-28.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.006  或          https://www.mater-rep.com/CN/Y2017/V31/I6/25
1 He P, Yu H, Li D, et al. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries[J]. J Mater Chem,2012,22(1):3680.
2 Zhecheva E, Stoyanova R, Alcantara R, et al. Cation order/disorder in lithium transition-metal oxides as insertion electrodes for lithium-ion batteries[J]. Pure Appl Chem,2002,74(6):1881.
3 Jafta C, Ozoemena K, Mathe M, et al. Characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery[J]. Electrochim Acta,2012,85(13):411.
4 Luo W, Dahn J R. The impact of Zr substitution on the structure electrochemical performance and thermal stability of Li[Ni1/3-Mn1/3-zCo1/3Zrz]O2[J]. J Electrochim Soc,2011,158(4):A424.
5 Liao L, Wang X Y, Luo X F, et al. Synthesis and electrochemical properties of layered LiNi0.333Co0.333Mn0.293Al0.04O2-zFz cathode materials prepared by the sol-gel method[J]. J Power Sources,2006,160(4):653.
6 Qi Y, Huang Y, Jia D, et al. Preparation and characterization of novel spinel Li4Ti5O12-xBrx anode materials[J]. Electrochim Acta,2009,54(3):4770.
7 Woo S U, Yoon C S, Amine K, et al. Significant improvement of electrochemical performance of AlF-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode materials[J]. J Electrochim Soc,2007,154(4):A1000.
8 Park J H, Lim J, Yoon J, et al. The effects of Mo doping on 0.3Li-[Li0.33Mn0.67]O2·0.7Li[Ni0.5Co0.2Mn0.3]O2 cathode material[J]. Dalton Trans,2012,41(10):3053.
9 He Z, Wang Z, Cheng L, et al. Structural and electrochemical cha-racterization of layered 0.3Li[Li2MnO3·0.7LiMn0.35-x/3Ni0.35-x/3-Co0.15-x/3CrxO2 cathode synthesized by spray drying[J]. Adv Powder Technol,2014,25(2):647.
10 Hu W,Zhong S W,Huang B. Optimizing electrochemical properties in Li-rich Mn-based cathode material[J]. Nonferrous Metals Sci Eng,2014,4(5):32(in Chinese).
胡伟,钟盛文,黄冰. 富锂锰基正极材料的改性及电化学性能研究[J]. 有色金属科学与工程,2014,4(5):32.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[3] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[4] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[5] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[6] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[7] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[8] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[9] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[10] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[11] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[12] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[13] 张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
[14] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[15] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed