Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 29-33    https://doi.org/10.11896/j.issn.1005-023X.2017.06.007
  材料研究 |
溶液燃烧法合成Co3O4纳米粉体及热处理研究
魏玉鹏1, 2, 王海燕1, 2, 兰伟3, 卢学峰1, 2, 喇培清1, 2, 马吉强1, 2
1 兰州理工大学材料科学与工程学院, 兰州 730050;
2 兰州理工大学省部共建有色金属先进加工与再利用国家
重点实验室, 兰州 730050;
3 兰州大学物理科学与技术学院, 兰州 730000
Study on Synthesis of Nanocrystalline Co3O4 Powders by Solution Combustion
Technique and the Subsequent Heat Treatment Process
WEI Yupeng1,2, WANG Haiyan1,2, LAN Wei3, LU Xuefeng1,2, LA Peiqing1,2, MA Jiqiang1,2
1 College of Material Science and Technology, Lanzhou University of Technology, Lanzhou 730050;
2 State Key Laboratory of
Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050;

3 College of Physics Science and Technology, Lanzhou University, Lanzhou 730000
下载:  全 文 ( PDF ) ( 1624KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别以氨基乙酸、柠檬酸、葡萄糖为燃料, Co(NO3)2·6H2O为氧化剂, 采用溶液燃烧法合成Co3O4 粉体,并对氨基乙酸为燃料合成的Co3O4粉体在500 ℃、600 ℃和700 ℃热处理,研究其结构、微观形貌和磁学性能。研究表明各燃料配制的前驱体溶液在300 ℃均可发生燃烧反应合成Co3O4 粉体,以氨基乙酸为燃料时,合成粉体的颗粒较大,中间有气孔,分散性好,残留少量的氨基乙酸。n(氨基乙酸)∶n(硝酸钴)=1.11∶1时合成的Co3O4粉体 600 ℃热处理后得到了高纯度、分散性好、平均径向尺寸80 nm的Co3O4纳米粉体。以氨基乙酸为燃料合成的Co3O4产物在600 ℃和700 ℃热处理后,其矫顽力和剩磁值都比500 ℃热处理后的要小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏玉鹏
王海燕
兰伟
卢学峰
喇培清
马吉强
关键词:  溶液燃烧法  Co3O4纳米粉体  热处理  磁性能    
Abstract: Co3O4 powders were synthesized by solution combustion technique using glycine, citric acid, glucose as fuel,respectively, and Co(NO3)2·6H2O as oxidizing agent. Microstructure, morphology and magnetic properties of Co3O4 powders which were synthesized through glycine as fuel and annealed at 500 ℃, 600 ℃ and 700 ℃ were investigated. The results showed that Co3O4 powders can be synthesized by combustion reaction with different precursor solutions at 300 ℃. The Co3O4 powders which were synthesized by using glycine as fuel had large particle zise, certain porosity, good dispersion and a small amount of residual glycine. The nanocrystalline Co3O4 powders with high purity, fine dispersion, 80 nm average radial dimension could be obtained while glycine-to-Co(NO3)2·6H2O molar ratio was 1.11∶1 and annealing temperature was 600 ℃. The synthesized Co3O4 powders annealed at 600 ℃ and 700 ℃ exhibited lower coercivity and remanence value than those annealed at 500 ℃.
Key words:  solution combustion technique    nanocrystalline Co3O4 powders    heat treatment    magnetic property
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TB32  
  TB34  
基金资助: 国家自然科学基金青年基金(51402142);甘肃省自然科学基金(148RJZA001);省部共建有色金属先进加工与再利用国家重点实验室(兰州理工大学)开放基金(SKL1304;SKLAB02014003)
作者简介:  魏玉鹏:男,1978年生,硕士,讲师,主要研究方向为纳米功能材料,E-mail: weiyp05@lut.cn
引用本文:    
魏玉鹏, 王海燕, 兰伟, 卢学峰, 喇培清, 马吉强. 溶液燃烧法合成Co3O4纳米粉体及热处理研究[J]. 《材料导报》期刊社, 2017, 31(6): 29-33.
WEI Yupeng, WANG Haiyan, LAN Wei, LU Xuefeng, LA Peiqing, MA Jiqiang. Study on Synthesis of Nanocrystalline Co3O4 Powders by Solution Combustion
Technique and the Subsequent Heat Treatment Process. Materials Reports, 2017, 31(6): 29-33.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.007  或          https://www.mater-rep.com/CN/Y2017/V31/I6/29
1 Zhang Dongen, Li Feng,Chen Aimei,et al. A facile synthesis of Co3O4 nanoflakes: Magnetic and catalytic properties [J].Solid State Sci,2011,13:1221.
2 Sun Hongyu, Ahma Mashkoor, Zhu Jing. Morphology-controlled synthesis of Co3O4 porous nanostructures for the application as lithiumion battery electrode [J]. Electrochim Acta,2013,89:199.
3 Groven L J, Pfei T L, Pourpoint T L. Solution combustion synthesized cobalt oxide catalyst precursor for NaBH4 hydrolysis[J]. Int J Hydrogen Energ,2013,38:6377.
4 Zhu J J, Kamalakanan K, Anna F, et al. Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase[J]. ACS Catal,2012,1(4):342.
5 Dong X C, Xu H, Wang X W, et al. 3D graphene cobalt oxide electrode for high performance supercapacitor and enzymeless glucose detection[J]. ACS Nano,2012,6(4):3206.
6 Yan Hongjian, Xie Xionghui, Liu Kewei, et al. Faile preparation of Co3O4 nanoparticles via thermal decomposition of Co(NO3)2[J]. Powder Technol,2012,221:199.
7 Agilandeswari K, Ubankumar A. Synthesis, characterization, optical and magnetic properties of Co3O4 nanoparticles by quick precipitation [J]. Synth React Inorg Met-Org Nano-Met Chem,2016,46(4):502.
8 Pang Mingjun, Long Guohui, Jiang Shang, et al. Ethanol-assisted solvothermal synthesis of porous nanostructured cobalt oxides (CoO/Co3O4) for high-performance supercapacitors [J]. Chem Eng J,2015,280:377.
9 Guo Mingyong, Wang Yanmin, Pan Zhidong, et al. Sythesis of nanocrystalline (Co0.5Cu0.5)(MnFe)O4 ceramic pigment via solution combustion technique[J].J Chin Ceram Soc,2015,43(4):411(in Chinese).
郭名勇,王燕民,潘志东,等.溶液燃烧法合成(Co0.5Cu0.5)(MnFe)-O4纳米晶陶瓷色料[J].硅酸盐学报,2015,43(4):411.
10 Wei Wen, Wu Jinming, Tu Jiangping. A nonel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries [J]. J Alloy Compd,2012,513:592.
11 Toniolo J C, Takimi A S, Bergmann C P. Nano-structured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method[J]. Mater Res Bull,2010,45:672.
12 Gardey Merino M C, Palermo M, et al. Combustion synthesis of Co3O4 nanoparticles: Fuel ratio effect on the physical properties of the resulting powders[J]. Procedia Mater Sci,2012,1:588.
13 Ou Yujing, La Peiqing, Wei Yupeng, et al. Research progress in preparation methods of nano metal oxide [J]. Mater Rev:Rev,2012,26(11):36(in Chinese).
欧玉静,喇培清,魏玉鹏,等.溶液燃烧合成法制备纳米金属氧化物的研究进展[J].材料导报:综述篇,2012,26(11):36.
14 Gao Libo, Zhang Qiang, Hai Zhenyin, et al. Preparation and cha-racterization of Co3O4 nanoparticle[J]. New Chem Mater,2014,42(8):85(in Chinese).
高立波,张强,海振银,等. Co3O4纳米颗粒的制备及表征[J].化工新型材料,2014,42(8):85.
15 Jain S R,Adiga K C,Vemeker V R P. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures [J]. Combust Flame,1981,40(1):71.
16 Zhou Junyi, Li Xiaoci,Li Runsheng,et al. Single step solution combustion synthesis of CaO nanocrystals using ethylene glycol as fuel[J].Chin J Rare Met,2010,34(S2):57(in Chinese).
周俊艺, 李小慈, 李润生,等. 乙二醇溶液燃烧法一步合成CoO[J]. 稀有金属,2010,34(S2):57.
17 Nethravathi C, Sonia S, Ravishankar N, et al. Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of α-cobalt Hydroxide [J]. J Phys Chem B,2005,109:11468.
18 Ichiyanagi Y, Kimishima Y, Yamada S. Magnetic study on Co3O4 nanoparticles [J]. J Magn Magn Mater,2004,272-276:e1245.
19 Qi Yuanchun, Zhao Yanbao, Wu Zhishen. Preparation of cobalt oxi-de nanoparticles and cobalt powders by solvothermal process and their characterization [J]. Mater Chem Phys,2008,110:4.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[3] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[4] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[7] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[8] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[9] 王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
[10] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[11] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[12] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[13] 王旭洁, 雒翠梅, 母军, 漆楚生. 热处理对木材多尺度结构及力学性能影响的研究现状[J]. 材料导报, 2024, 38(18): 23020251-8.
[14] 张先满, 李星涛, 季坤鹏, 陈再雨, 罗洪峰. 原位生成周期性层片结构镀层及其在NaCl溶液中的腐蚀形貌[J]. 材料导报, 2024, 38(12): 22110026-7.
[15] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed