Please wait a minute...
CLDB  2017, Vol. 31 Issue (5): 134-138    https://doi.org/10.11896/j.issn.1005-023X.2017.05.022
  水泥基材料 |
CO2养护混凝土技术研究进展
史才军, 王吉云, 涂贞军, 王德辉
湖南大学土木工程学院,长沙 410082
Progresses in CO2 Curing of Concrete
SHI Caijun, WANG Jiyun, TU Zhenjun, WANG Dehui
College of Civil Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1433KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CO2养护混凝土技术是将CO2与新拌混凝土在成型后接触,使CO2与水泥熟料矿物间发生化学反应,进而使得新拌水泥混凝土在很短的时间内凝结硬化的养护技术。它不仅可以获得性能更好的混凝土,还可以合理利用CO2并且节能减排,是一项有前景的可持续发展技术。综述了CO2养护混凝土的反应机理、影响养护过程的关键因素、CO2养护混凝土对微观结构以及耐久性的影响、后续水养护等方面的研究进展,并对CO2养护混凝土技术的未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史才军
王吉云
涂贞军
王德辉
关键词:  CO2养护混凝土  预养护  反应机理  微观结构  后续水养护    
Abstract: The CO2-curing concrete technology is a promising sustainable curing method, which based on the chemical reactions between CO2 and fresh concrete. By CO2-curing concrete technology, the fresh concrete could obtain higher early strength and denser microstructure. In another, the CO2-curing concrete technology is an environmentally friendly and energy-efficient method to consume CO2. This paper reviews and summarizes the development and latest research results of CO2 curing of concrete. The kinetics and mechanism of CO2-curing concrete technology, the effect of CO2-curing concrete on microstructure and the subsequent hydration of CO2-curing concrete are introduced. Finally, according to the review of previous studies, some recommendations will be given about the further research in this field.
Key words:  CO2-curing concrete    pre-curing    reaction mechanism    microstructure    subsequent hydration
出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TU528  
作者简介:  史才军:男,1963年生,博士,教授,主要从事水泥混凝土方面的研究 E-mail:cshi@hnu.edu.cn
引用本文:    
史才军, 王吉云, 涂贞军, 王德辉. CO2养护混凝土技术研究进展[J]. CLDB, 2017, 31(5): 134-138.
SHI Caijun, WANG Jiyun, TU Zhenjun, WANG Dehui. Progresses in CO2 Curing of Concrete. Materials Reports, 2017, 31(5): 134-138.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.022  或          https://www.mater-rep.com/CN/Y2017/V31/I5/134
1 Tarasova O, Koide H, Dlugokencky E. The state of greenhouse gases in the atmosphere using global observations through 2014[C]// EGU General Assembly Conference.2016.
2 Bertos M F, Simons S J R, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2[J]. J Hazard Mater,2004,112(3):193.
3 Shi C, Liu M, He P, et al. Factors affecting kinetics of CO2 curing of concrete[J]. J Sustainable Cement-based Mater,2012,1(1):24.
4 Shi C, Wu Y. Studies on some factors affecting CO2 curing of lightweight concrete products[J]. Resources Conservation Recycling,2008,52(8-9):1087.
5 Shi C, Wu Y. CO2 curing of concrete blocks[J]. Concr Int,2009,31(2):39.
6 Shi C, He F. Properties and microstructure of CO2 cured concrete blocks[C]// Construction Waste Recycling and Civil Engineering Sustainable Development—Proceedings of the 2nd International Conference on Waste Engineering and Management.2010:96.
7 Zhan B, Poon C, Shi C. CO2 curing for improving the properties of concrete blocks containing recycled aggregates[J]. Cem Concr Compos,2013,42(9):1.
8 Shi C, Wang D, et al. Weathering properties of CO2-cured concrete blocks[J]. Resources Conservation Recycling,2012,65(4):11.
9 Kou S C, Zhan B J, Poon C S. Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates[J]. Cem Concr Compos,2014,45(1):22.
10 Zhan B, et al. Experimental study on CO2 curing for enhancement of recycled aggregate properties[J]. Constr Build Mater,2013,67:3.
11 Wauhop B J. Curing of concrete block-a study of energy consumption[R]. Herndon, VA, USA: National Concrete Masonry Association, 1980.
12 Shi C, He F, Wu Y. Effect of pre-conditioning on CO2, curing of lightweight concrete blocks mixtures[J]. Constr Build Mater,2012,26(1):257.
13 Zou Q, Shi C, Zheng K, et al.Effect of pre-conditioning on CO2 curing of block concretes[J].J Build Mater,2008,11(1):116.
邹庆焱, 史才军, 郑克仁,等. 预养护对砌块混凝土二氧化碳养护的影响[J]. 建筑材料学报, 2008,11(1):116.
14 He P, Shi C, Tu Z, et al. Effect of further water curing on compressive strength and microstructure of CO2 -cured concrete[J]. Cem Concr Compos,2016,72:80.
15 Simatupang M H, Habighorst C, Lange H, et al. Investigations on the influence of the addition of carbon dioxide on the production and properties of rapidly set wood-cement composites[J]. Cem Concr Compos,1995,17:187.
16 Soroushian P, Won J P, Chowdhury H, et al. Development of acce-lerated processing techniques for cement-bonded wood particleboard[J]. Cem Concr Compos,2003,25(7):721.
17 Qi H. The acelerated hardening of wod-cement cmposites with carbon doxide injection: Mechanisms and aplications[D].Toronto:Canado Faculty of Forestry University of Toronto,2005.
18 Soroushian P, Won J P, Hassan M. Durability characteristics of CO2-cured cellulose fiber reinforced cement composites[J]. Constr Build Mater,2012,34(3):44.
19 Pizzol V D, Mendes L M, Frezzatti L, et al. Effect of accelerated carbonation on the microstructure and physical properties of hybrid fiber-cement composites[J]. Minerals Eng,2014,59(3):101.
20 Almeida A E F S, Tonoli G H D, et al. Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbo-nation at early age[J]. Cem Concr Compos,2013,42(9):49.
21 Klemm W A, Berger R L. Accelerated curing of cementitious systems by carbon dioxide : Part I. Portland cement[J]. Cem Concr Res,1972,2(5):567.
22 Klemm W A,Berger R L.Accelerated curing of cementitious systems by carbon dioxide: Ⅱ[J].Cem Concr Res,1972,2(6):647.
23 Berger R L, Young J F, Leung K. Acceleration of hydration of cal-cium silicates by carbon dioxide treatment[J].Nature,1972,240:16.
24 Young J F, Berger R L, Breese J. Accelerated curing of compacted calcium silicate mortars on exposure to CO2[J]. J Am Ceram Soc,1974,57(9):394.
25 Shao Y, Mirza M S, Wu X. CO2 sequestration using calcium-silicate concrete[J]. Canadian J Civil Eng,2006,33(6):776.
26 El-Hassan H, Shao Y, et al. Reaction products in carbonation-cured lightweight concrete[J]. J Mater Civil Eng,2013,25:799.
27 Lange L C, Hills C D, Poole A B. The effect of accelerated carbonation on the properties of cement-solidified waste forms[J]. Waste Management,1996,16(8):757.
28 Shtepenko O, Hills C, Brough A, et al. The effect of carbon dioxide on β-dicalcium silicate and Portland cement[J]. Chem Eng J,2006,118(1):107.
29 Seishi G, Kenzo S, Takeshi K, et al. Calcium silicate carbonation products[J]. J Am Ceram Soc,1995,78(11):2867.
30 Goodbrake C J, Young J F, Berger R L. Reaction of beta-dicalcium silicate and tricalcium silicate with carbon dioxide and water vapor [J]. J Am Ceram Soc,1979,62(3-4):168.
31 Shi Caijun,Zou Qingyan,He Fuqiang.Study on CO2 curing kinetics of concrete[J].J Chin Ceram Soc,2010,38(7):1179.
史才军, 邹庆焱, 何富强. 二氧化碳养护混凝土的动力学研究[J]. 硅酸盐学报,2010,38(7):1179.
32 Shao Y,Shi C.Carbonation curing for making concrete products—An old concept and a renewed interest[C]// Proceedings of the 6th International Symposium on Cement and Concrete,2006.
33 Monkman S, Shao Y. Assessing the carbonation behavior of cementitious materials[J]. J Mater Civil Eng,2014,18(6):768.
34 Shao Y, Zhou X, Monkman S. A new CO2 sequestration process via concrete products production[C]// EIC Climate Change Technology, 2006 IEEE. IEEE,2006:1.
35 Bier T A, Kropp J, Hilsdorf H K. Carbonation and realcalinisation of concrete and hydrated cement paste[J]. Durability Const Mater,1987,3:927.
36 Morandeau A, et al. Impact of accelerated carbonation on OPC cement paste blended with fly ash[J]. Cem Concr Res,2015,67:226.
37 Chindaprasirt P, Rukzon S. Pore structure changes of blended cement pastes containing fly ash, rice husk ash, and palm oil fuel ash caused by carbonation[J]. J Mater Civil Eng,2009,21(11):666.
38 Monkman S, Shao Y. Carbonation curing of slag-cement concrete for binding CO2 and improving performance[J]. J Mater Civil Eng,2010,22(4):296.
39 Zhang D, Cai X, Shao Y. Carbonation curing of precast fly ash concrete[J]. J Mater Civil Eng,2016,28(11):04016127.
40 Tu Z, Guo M Z, Chi S P, et al. Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes[J]. Cem Concr Compos,2016,72:9.
41 El-Hassan H, Shao Y. Early carbonation curing of concrete masonry units with Portland limestone cement[J]. Cem Concr Compos,2015,62:168.
42 Shi Caijun,He Pingping,Tu Zhenjun,et al.Effect of pre-conditioning on process and microstructure of carbon dioxide cured concrete[J].J Chin Ceram Soc,2014,42(8):996.
史才军, 何平平, 涂贞军,等. 预养护对二氧化碳养护混凝土过程及显微结构的影响[J]. 硅酸盐学报, 2014, 42(8):996.
43 Kashef-Haghighi S, Shao Y, Ghoshal S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing[J]. Cem Concr Res,2015,67(67):1.
44 Bukowski J M, Berger R L. Reactivity and strength development of CO2 activated non-hydraulic calcium silicates[J]. Cem Concr Res,1979,9(79):57.
45 Elsener, B. Corrosion of steel in concrete[J]. Uhligs Corrosion Handbook Third Edition,2014, 20(5):105.
46 Shih S M, Ho C, et al. Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature[J]. Ind Eng Chem Res, 1999, 38:1316.
47 Zhang D, Shao Y. Early age carbonation curing for precast reinforced concretes[J]. Constr Build Mater,2016,113:134.
48 Rostami V, Shao Y, et al. Microstructure of cement paste subject to early carbonation curing[J]. Cem Concr Res,2012,42:186.
49 Bentz D P. Mixture poportioning for iternal cring[J]. Concr Int,2005, 27(2):35.
50 lmeida A E F S, Tonoli G H D, Santos S F, et al. Improved dura-bility of vegetable fiber reinforced cement composite subject to accele-rated carbonation at early age[J]. Cem Concr Compos,2013,42:49.
51 Junior A N, et al. The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes[J]. Constr Build Mater,2015,77:448.
52 Rostami V, et al. Durability of concrete pipes subjected to combined steam and carbonation curing[J]. Constr Build Mater,2011,25:3345.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[5] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[6] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[7] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[8] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[9] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[10] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[11] 张建伟, 李智睿, 曹克磊, 陈磊, 赵江雨. 某水库粉质粘土渗透特性及微观机理研究[J]. 材料导报, 2024, 38(24): 23090129-8.
[12] 石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
[13] 黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
[14] 周辉, 莫继良, 张蒙祺, 王好平, 陈伟, 龚柯梦. 人工漂珠制备吸声材料的降噪性能研究[J]. 材料导报, 2024, 38(22): 23110073-7.
[15] 甘如饴, 浮洁, 綦松, 余淼. 基于微流控系统的磁流变胶微观结构演化与磁敏行为分析[J]. 材料导报, 2024, 38(21): 23060186-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed