Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 63-69    https://doi.org/10.11896/j.issn.1005-023X.2017.03.011
  材料综述 |
可视化无损检测技术研究进展*
朱晔, 魏世丞, 梁义, 王玉江, 郭蕾, 刘文超
装甲兵工程学院装备再制造技术国防科技重点实验室,北京 100072;
Research Progress on Visualized Nondestructive Testing Technology
ZHU Ye, WEI Shicheng, LIANG Yi, WANG Yujiang, GUO Lei, LIU Wenchao
National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072;
下载:  全 文 ( PDF ) ( 1493KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业产品质量及服役安全验证要求的不断提升,常规无损检测已无法满足实时、在线、快速作业的需要,可视化无损检测技术应运而生。将可视化技术应用于产品质量检测与评估,具有清晰、直观、精准等优点,对提高产品检测效率和精度,实现大规模工业化、信息化、智能化检测具有重要意义。主要从超声无损检测及成像技术、红外热波无损检测及其图像序列处理技术、电磁无损检测及其信号采集处理技术、层析成像技术与三维重构方法,以及可视化无损自动检测技术等方面,介绍了国内外可视化无损检测技术的研究进展,分析了各类检测技术的适用范围和特点,并对其发展方向和应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱晔
魏世丞
梁义
王玉江
郭蕾
刘文超
关键词:  可视化无损检测  超声  红外热波  电磁  层析    
Abstract: With the increasing demand for industrial product quality and safety verification, conventional nondestructive testing (NDT) technology can hardly fulfil special requirements such as real-time monitoring, on-line inspection and rapid detection. That brings the emergence of visualized NDT. It is clearer, more intuitive and accurate to apply visualized technology to the detecting and estimating of product quality. That is much significant for higher detecting efficiency and accuracy, as well as for large-scale industrialization, informationization and intelligentization. This paper summarizes the research progress on visualization technology applied in NDT. First, the following aspects: ultrasonic testing, infrared thermal wave testing, electronic and magnetic testing, computerized tomography and some automated NDT techniques as well as their visualization methods are introduced. Then, the range of application, merits and demerits of each technology are analyzed. Finally, the improvement and development prospect of visua-lization technology used in NDT is forecasted.
Key words:  visualized nondestructive testing    ultrasonic    infrared thermal wave    electromagnetism    computerized tomography
出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TG115.28  
基金资助: *国家自然科学基金优秀青年基金项目(51675533; 51222510);中国工程院咨询研究项目(2015-09-XY-003; 2015-06-ZD-01)
作者简介:  朱晔:女,1992年生,硕士研究生,研究方向为装备腐蚀监检测 E-mail:zyzgy1117@163.com 魏世丞:通讯作者,男,1974年生,博士后,研究员,博士研究生导师,研究方向为金属腐蚀与防护 E-mail: wsc33333@163.com
引用本文:    
朱晔, 魏世丞, 梁义, 王玉江, 郭蕾, 刘文超. 可视化无损检测技术研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 63-69.
ZHU Ye, WEI Shicheng, LIANG Yi, WANG Yujiang, GUO Lei, LIU Wenchao. Research Progress on Visualized Nondestructive Testing Technology. Materials Reports, 2017, 31(3): 63-69.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.011  或          https://www.mater-rep.com/CN/Y2017/V31/I3/63
1 刘贵民,马丽丽.无损检测技术[M]. 北京: 国防工业出版社,2011:1.
2 雷毅, 丁刚, 鲍华, 等. 无损检测技术问答[M]. 北京: 中国石化出版社,2013:1.
3 Barkhatov V A. Development of methods of ultrasonic nondestructive testing of welded joints[J]. Russian J Nondestructive Testing,2003,39(1):23.
4 Niu G, Li T, Wang L. Mechanism design of the inspection robot for aircraft fuel tank[M]//Jin D, Lin S. Advances in Mechanical and Electronic Engineering. Heidelberg: Springer Verlag Berlin,2012:197.
5 Liu X H. The development of visual inspection equipment applied in pipeline and facilities[J]. Petroleum Eng Construction,1994,20(3):46(in Chinese).
刘希和. 管道及设备检测用内窥镜的发展[J].石油工程建设,1994,20(3):46.
6 Shi L, Peng Z W. The application of industrial endoscope to full scale aircraft structural fatigue test[J]. Nondestructive Testing,2016,38(1):55(in Chinese).
石磊,彭智伟.工业内窥镜在全尺寸结构飞机疲劳试验中的应用[J].无损检测,2016,38(1):55.
7 Zhao T Q, Lu R, Wu J B. The damage and protection of NDT occupational disease[J]. Chinese J Radiological Health,2011,20(4):419(in Chinese).
赵同强,卢锐,吴家兵.无损检测及其职业病危害因素与防护[J].中国辐射卫生,2011,20(4):419.
8 Liu S P, Liu F F, Guo E M, et al. Advanced nondestructive evaluation techniques and applications based on ultrasonic imaging[J]. J Nanchang Hangkong University: Nat Sci,2007,21(3):8(in Chinese).
刘松平,刘菲菲,郭恩明,等.先进的超声可视化成像检测技术及其应用[J]. 南昌航空大学学报:自然科学版,2007,21(3):8.
9 Chen S, Lin B, Han X, et al. Automated inspection of engineering ceramic grinding surface damage based on image recognition[J]. Int J Adv Manufacturing Technol,2013,66(1-4):431.
10 Liu Z Q, Liu X. Development of ultrasonic nondestructive testing techniques[J]. Nondestructive Testing,2000,22(9):403(in Chinese).
刘镇清,刘骁.超声无损检测的若干新进展[J].无损检测,2000,22(9):403.
11 王悦民,李衍,陈和坤.超声相控阵检测技术与应用[M].北京:国防工业出版社,2014:24.
12 Liu S P, Liu F F, Shi W J, et al. High-resolution ultrasonic imaging evaluation and behavior analysis of impact damages in composites[J]. J Mechan Eng,2013,49(22):16(in Chinese).
刘松平,刘菲菲,史俊伟,等.复合材料冲击损伤高分辨率超声成像检测与损伤行为分析[J].机械工程学报,2013,49(22):16.
13 Liu L B, Lu M H, Liu X F, et al. Development of multi-channel dynamic photoelasticity imaging system[J]. Nondestructive Testing,2010,32(8):634(in Chinese).
刘力博,陆铭慧,刘勋丰,等.多通道动态光弹成像系统的研制[J].无损检测,2010,32(8):634.
14 Mo R Y, Wang W H, Hou R F, et al. Laser ultrasound detection of surface defect in porcelain insulator[J]. J Northwest University: Nat Sci Ed,2013,43(5):715(in Chinese).
莫润阳, 王文洪, 侯汝锋, 等. 高压瓷绝缘子表面缺陷激光超声检测[J].西北大学学报:自然科学版,2013,43(5):715.
15 Liu I H, Yang C H. A quantitative laser ultrasound visualization system for investigating the interaction of wedge waves with a defect[M]// Büyüköztürk O, et al. Nondestructive Testing of Materials and Structures. Netherlands: Springer,2013:25.
16 Fujita Y, Ogawa M T, Asai M S, et al. Development of a welding monitoring system for in-process quality control of thick walled pipe[J]. Welding World,2012,56(11-12):15.
17 Bazulin E G. Comparison of systems for ultrasonic nondestructive testing using antenna arrays or phased antenna arrays[J]. Russian J Nondestructive Testing,2013,49(7):404.
18 Bazulin E G. Reconstruction of flaw images by the C-SAFT method from echo signals measured by an antenna array in the triple-scanning mode[J]. Russian J Nondestructive Testing,2012,48(1):1.
19 Bazulin E G. Determination of the reflector type from an image reconstructed using echo signals measured with ultrasonic antenna arrays[J]. Russian J Nondestructive Testing,2014,50(3):141.
20 Bazulin E G. Restoring the image of reflectors using the C-SAFT method during multiple reflection of echo signals from the boundaries of a cylindrical inspection object[J]. Russian J Nondestructive Testing,2013,49(2):77.
21 Bazulin E G. On the possibility of using the maximum entropy me-thod in ultrasonic nondestructive testing for scatterer visualization from a set of echo signals[J]. Acoustical Phys,2013,59(2):210.
22 Bazulin A E, Bazulin E G. The possibility of using the maximum-entropy method in ultrasonic nondestructive testing for increasing the resolution of echo signals[J]. Russian J Nondestructive Testing,2006,42(9):559.
23 Bazulin E G. Application of superresolution methods for expert control of cylindrical objects[J]. Russian J Nondestructive Testing,2005,41(6):369.
24 Siemiatkowska B, Chojecki R, Wis'niowski M, et al. Mobile system for nondestructive testing of weld joints via time of flight diffraction (TOFD) technique[M]// Kozłowski K R. Robot Motion and Control 2011. London: Springer,2012:65.
25 Sfarra S, Theodorakeas P, Avdelidis N P, et al. Thermographic, ultrasonic and optical methods: A new dimension in veneered wood diagnostics[J]. Russian J Nondestructive Testing,2013,49(4):234.
26 Xiang D, Qin Y, Li F. Surface wave acoustic microscopy for rapid non-destructive evaluation of silicon nitride balls[J]. J Nondestructive Evaluation,2011,30(4):273.
27 Zhang Y, Sidibé Y, Maze G, et al. Detection of damages in underwater metal plate using acoustic inverse scattering and image processing methods[J]. Appl Acoustics,2016,103:110.
28 张金玉,杨正伟,田干,等.红外热波检测及其图像序列处理技术[M].北京:国防工业出版社,2015:16.
29 Yang X L, Dai Y C, Li Y H, et al. Application of the thermal wave testing technology in composites of airplane[J]. Nondestructive Testing,2007,29(4):200(in Chinese).
杨小林,代永朝,李艳红,等.红外热波技术在飞机复合材料损伤检测中的应用[J].无损检测,2007,29(4):200.
30 Ibarra-Castanedo C, Maldague X P V. Infrared thermography[M]// Czichos H. Handbook of Technical Diagnostics. Berlin Heidelberg: Springer,2013:175.
31 Mei L, Wu L D, Wang Y W. Image processing in pulse heating infrared nondestructive test[J]. J Infrared Millimeter Waves,2002,21(5):372(in Chinese).
梅林,吴立德,王裕文.脉冲加热红外无损检测中的图像处理[J].红外与毫米波学报,2002,21(5):372.
32 Wang P F, Yang Y Y, Zhao R. Application of infrared thermal imaging technology in the detection of sub-surface defects[J]. Electronic Design Eng,2012,20(20):176(in Chinese).
王鹏飞,杨永跃,赵茹.红外热成像技术在亚平面缺陷检测中的应用[J].电子设计工程,2012,20(20):176.
33 Deng X D, Cheng L F, Mei H, et al. Infrared thermal wave imaging for nondestructive detection and measurement of the C/SiC compo-sites[J]. Acta Materiae Compositae Sinica,2009,26(5):112(in Chinese).
邓晓东,成来飞,梅辉,等.C/SiC复合材料的定量红外热波无损检测[J].复合材料学报,2009,26(5):112.
34 Jiang Q H, Jiang C S, Ge Q P, et al. Segmentation and 3D display of infrared thermal image[J]. Nondestructive Testing,2008,30(2):100(in Chinese).
姜千辉,姜长胜,葛庆平,等.红外热波序列图像的图像分割与三维显示[J].无损检测,2008,30(2):100.
35 Hao S A, Qin J. The registration and fusion of infrared thermal image and visible light image[J]. Surveying Mapping,2008,31(3):131(in Chinese).
郝松傲,秦军.热红外图像与可见光图像的配准与融合[J].四川测绘,2008,31(3):131.
36 Kushner A V, Shilov A V, Novikov V A. A hardware-software system for the magnetographic inspection of ferromagnetic objects[J]. Russian J Nondestructive Testing,2010,46(6):421.
37 Nazarchuk Z T, Dzhala V R, Synyavs′kyi A T. Detection of subsurface inhomogeneities in dielectric materials by the microwave method[J]. Mater Sci,2014,49(4):425.
38 Matsuzaki R, Nozawa Y, Todoroki A, et al. Crack visualization of metallic structures using time-domain reflectometry with two-dimensional microstrip lines[J]. NDT & E International,2014,66:34.
39 Xian W, Li S G. Development of the optimal nondestructive testing approach—Industrial CT[J]. Opto-electronic Eng,1995,22(4):51(in Chinese).
先武,李时光.最佳无损检测手段——工业CT技术的发展[J].光电工程,1995,22(4):51.
40 Wang Z Y, Tang G P, Li J W, et al. Development and application of industrial CT[J]. Nondestructive Testing,2010(7):504(in Chinese).
王增勇,汤光平,李建文,等.工业 CT 技术进展及应用[J]. 无损检测,2010(7):504.
41 Zhou J, Xu B S, Wang H D, et al. Introduction of industrial computed tomograghy technology and its application in remanufacturing[J]. Mater Rev,2013,27(S1):101(in Chinese).
周京,徐滨士,王海斗,等.工业CT技术应用介绍及其在再制造中的展望[J].材料导报,2013,27(专辑21):101.
42 Huang R, Ma K L, McCormick P, et al. Visualizing industrial CT volume data for nondestructive testing applications[C]//Proceedings of the 14th IEEE Visualization 2003 (VIS'03). IEEE Computer So-ciety,2003.
43 Chenglin L, Xiaohua W, Hua X, et al. X-ray phase-contrast CT imaging of the acupoints based on synchrotron radiation[J]. J Electron Spectroscopy Related Phenomena,2014,196:80.
44 Wang T, Zhao M, Li J. Application of infrared CT simulation on damage detection of concrete slabs[J]. Chinese J Computational Mechanics,2007,24(5):579(in Chinese).
王婷,赵鸣,李杰.红外CT模拟在混凝土板内部缺陷探测中的应用[J].计算力学学报,2007,24(5):579.
45 Wang T, Fan W R, Hao K H, et al. Research on excitation modes for planar capacitive sensor array[J]. Transducer Microsystem Technologies,2012,31(9):71(in Chinese).
王挺,范文茹,郝魁红,等.平面式电容传感器阵列激励模式研究[J].传感器与微系统,2012,31(9):71.
46 Liu Y, Guo X S, Zhang D, et al. A simulation study of ultrasonic imaging of micro-crack in bone based on time-reversed approach[J]. Acta Acustica,2011,36(2):179(in Chinese).
刘洋,郭霞生,章东,等.基于时间反转的骨裂纹超声成像模拟研究[J].声学学报,2011,36(2):179.
47 Zhang J, Shi X M, Chen X L, et al. Development of ultra-sonic wave computer tomography technology and its application to non-destructive detection of concrete[J]. Chinese J Eng Geophys,2008,5(5):596(in Chinese).
张吉,师学明,陈晓玲,等.超声波CT技术在混凝土无损检测中的应用现状及发展趋势[J].工程地球物理学报,2008,5(5):596.
48 Shi D H, Gang T, Huang C H, et al. Spatial location and visualization of defects in precision weldments with complex structure[J]. Chinese J Lasers,2009,36(9):2393(in Chinese).
石端虎,刚铁,黄传辉,等.复杂结构精密焊件中缺陷空间定位及可视化[J].中国激光,2009,36(9):2393.
49 Skokov A A, Karikh V P. Improving the detectability of cracks du-ring flow inspection by 3D tomography[J]. Russian J Nondestructive Testing,2013,49(2):121.
50 Zhu M, Lu H Y, Li H Y. Design of 3D visualization nondestructive inspection system for solid rocket motor[J]. Acta Armamentarii,2008,29(7):891(in Chinese).
朱敏,卢洪义,李海燕.固体火箭发动机三维可视化无损检测系统设计[J].兵工学报,2008,29(7):891.
51 Luo X B, Chen T Q. Development trends of ultrasonic testing[J]. Nondestructive Testing, 2005, 27(3): 148(in Chinese).
罗雄彪, 陈铁群. 超声无损检测的发展趋势[J].无损检测,2005,27(3):148.
52 Nemytova O V, Rinkevich A B, Perov D V. Comparative classification of flaws using ultrasonic-tomography methods and evaluation of the instantaneous frequency of echo signals[J]. Russian J Nondestructive Testing,2013,49(6):301.
53 Liu Z, Ukida H, Ramuhalli P, et al. Integrated imaging and vision techniques for industrial inspection: A special issue on machine vision and applications[J]. Machine Vision Applications,2010,21(5):597.
54 Gowtham M, Vidhya K. Robot for crack detection and monitoring pipelines[J]. J Recent Res Eng Technol,2015,2(4):98.
55 Zhang L, Du Y, Cao A. The design of natural gas pipeline inspection robot system[C]// Proceedings of 2015 IEEE International Confe-rence on Information and Automation. IEEE,2015:843.
56 Han S, Ahn J, Moon H. Remotely controlled prehensile locomotion of a two-module 3D pipe-climbing robot[J]. J Mechan Sci Technol,2016,30(4):1875.
57 Shang J, Bridge B, Sattar T, et al. Development of a climbing robot for inspection of long weld lines[J]. Ind Robot: An Int J,2008,35(3):217.
58 Lu X Q, Liu W M, Wu Y X. Review of sensors and its applications in the welding robot[M]// Tarn T J, et al. Robotic Welding, Intelligence and Automation. Springer International Publishing,2015:337.
59 Zou Y R, Du D, Wang L. Visual sensing method based on texture analysis for automatic seam tracking systems[M]// Yang D. Informatics in Control, Automation and Robotics. Berlin Heidelberg: Springer,2011:719.
60 Bouchemal B, Zaatri A. Image-based control for cable-based robots[J]. Int J Control, Automation Systems,2014,12(1):118.
61 Lee S H. Design of the out-pipe type pipe climbing robot[J]. Int J Precision Eng Manufacturing,2013,14(9):1559.
62 La H M, Gucunski N, Kee S H, et al. Data analysis and visualization for the bridge deck inspection and evaluation robotic system[J]. Visualization Eng,2015,3(1):1.
63 Chanda S, Bu G, Guan H, et al. Automatic bridge crack detection—A texture analysis-based approach[M]// Gayar N El, et al. Artificial Neural Networks in Pattern Recognition. Switzerlang: Springer International Publishing,2014:193.
64 Gao X, Chen Y. Detection of micro gap weld using magneto-optical imaging during laser welding[J]. International J Adv Manufacturing Technol,2014,73(1-4):23.
65 Mosorov V, Tomczak L. Image texture defect detection method using fuzzy C-means clustering for visual inspection systems[J]. Arabian J Sci Eng,2014,39(4):3013.
66 Eshtayeh M, Hijazi A, Hrairi M. Nondestructive evaluation of welded joints using digital image correlation[J]. J Nondestructive Eva-luation,2015,34(4):1.
[1] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[2] 吴蒙华, 姜炳春, 肖雨晴, 贾卫平. 功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响[J]. 材料导报, 2025, 39(1): 23110271-6.
[3] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[4] 成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
[5] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[6] 董素芬, 宋泽轩, 张文辉, 黄智德, 韩宝国. 热诱导自愈合沥青混凝土研究综述:一种可持续路面材料[J]. 材料导报, 2024, 38(22): 23080062-12.
[7] 邓王红, 赵芷弘, 陈凯旋, 陈杰, 詹高成, 刘敏. 镓纳米团簇的超声制备与形态调控研究[J]. 材料导报, 2024, 38(18): 23060106-5.
[8] 姚福林, 褚泽南, 景冲, 赵越, 魏源. 热塑性复合材料大长宽比接头超声波焊接研究进展[J]. 材料导报, 2024, 38(16): 22110069-8.
[9] 李占明, 王宏宇, 孙晓峰, 王梦璐, 王瑞, 宋巍. 超声振动在激光熔覆中的作用机制及研究进展[J]. 材料导报, 2024, 38(16): 23040040-8.
[10] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[11] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[12] 李静, 张灵, 王昊, 陈犇, 陈东彬, 黄莹, 陈正. 碱激发矿渣混凝土密实性超声无损检测法及其影响因素[J]. 材料导报, 2024, 38(11): 22090243-7.
[13] 邬志超, 倪爱清, 陈俊磊, 王继辉. 吸波预浸料树脂及其复合材料的综合性能研究[J]. 材料导报, 2024, 38(10): 23010035-10.
[14] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[15] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed