Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23060106-5    https://doi.org/10.11896/cldb.23060106
  金属与金属基复合材料 |
镓纳米团簇的超声制备与形态调控研究
邓王红, 赵芷弘, 陈凯旋, 陈杰, 詹高成, 刘敏*
三峡大学理学院,湖北 宜昌 443002
Preparation of Gallium Nanoclusters and Regulation of Their Morphological Properties by Ultrasonic Treatment
DENG Wanghong, ZHAO Zhihong, CHEN Kaixuan, CHEN Jie, ZHAN Gaocheng, LIU Min*
College of Science, China Three Gorges University, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 33301KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米团簇具有独特的理化性质,在催化、传感和生物医学等领域前景广阔,受到相关研究人员的广泛关注。目前,尚未有关于超声制备镓金属纳米团簇的研究。本工作采用一步超声法,通过调节超声温度、时间等参数成功制备出两类镓纳米团簇。结合扫描电镜(SEM)和透射电镜(TEM)等表征手段,分析了镓纳米团簇制备过程中的温度效应,研究了镓纳米团簇的形态特征与成型过程。研究表明,在60 min的超声作用下,70 ℃左右是镓纳米团簇形成的最优温度,制备的镓纳米团簇形态可分为两大类:第一类是以破碎的镓颗粒为中心向外径向生长形成的簇状结构,第二类是不同棒状结构穿插交叠形成的簇状结构。本研究丰富了镓金属纳米团簇的种类,也为镓微/纳颗粒超声制备过程中的形态调控提供有益参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓王红
赵芷弘
陈凯旋
陈杰
詹高成
刘敏
关键词:    纳米团簇  超声合成  形态调控    
Abstract: Owing to their unique physicochemical properties, nanoclusters have attracted widespread attention, and show great promising in varies applications, such as in catalysis, sensing, and biomedicine. At present, there is no reports on the preparation of gallium nanoclusters by ultrasonication. In this work, two types of gallium nanoclusters were successfully prepared by one-step ultrasonication method by adjusting the para-meters of ultrasonic temperature and ultrasonic time. The temperature effect during the preparation of gallium nanoclusters was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the morphological characteristics and forming process of gallium nanoclusters were studied. It was found that the optimum temperature for gallium nanocluster formation was around 70 ℃ at 60 min. In addition, the morphology of gallium nanoclusters can be divided into two types:the first type is a cluster structure formed by gallium growing radially outwards, and the second type formed by interspersed rods. This study enriches the variety of gallium nanoclusters and provides a useful refe-rence for the morphological control during the ultrasonic preparation of gallium micro/nano particles.
Key words:  gallium    nanoclusters    ultrasound synthesis    morphology regulation
发布日期:  2024-10-12
ZTFLH:  G312  
基金资助: 国家自然科学基金(51501102)
通讯作者:  *刘敏,通信作者,三峡大学理学院副教授、硕士研究生导师。2008年吉首大学物理专业本科毕业,2011年江苏师范大学物理学专业硕士毕业,2014年东南大学光学工程专业博士毕业。目前主要从事磁性功能材料、自旋电子学等方面的研究工作。发表论文20余篇,包括Small、Advanced Materials、ACS Nano等。lmin@ctgu.edu.cn   
作者简介:  邓王红,南开大学电子信息与光学工程学院硕士研究生,本科毕业于三峡大学理学院物理系。主要从事液态金属功能材料、分子电子学等方面的研究工作。赵芷弘,三峡大学理学院物理学专业2021级硕士研究生,本科毕业于南京信息工程大学大气科学学院大气科学专业。主要从事凝聚态物理学方面的研究工作。
引用本文:    
邓王红, 赵芷弘, 陈凯旋, 陈杰, 詹高成, 刘敏. 镓纳米团簇的超声制备与形态调控研究[J]. 材料导报, 2024, 38(18): 23060106-5.
DENG Wanghong, ZHAO Zhihong, CHEN Kaixuan, CHEN Jie, ZHAN Gaocheng, LIU Min. Preparation of Gallium Nanoclusters and Regulation of Their Morphological Properties by Ultrasonic Treatment. Materials Reports, 2024, 38(18): 23060106-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060106  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23060106
1 Zhou K Y, Tang Z Y, Lu Y P, et al. Journal of Materials Science & Technology, 2017, 33, 131.
2 Yu Y, Qiao Z H, Xu T W, et al. Foundry Technology, 2022, 43(6), 401 (in Chinese).
于源, 乔竹辉, 徐铁伟, 等. 铸造技术, 2022, 43(6), 401.
3 Akyildiz K, Kim J H, So J H, et al. Journal of Industrial and Engineering Chemistry, 2022, 116, 120.
4 Wang X Y, Li K, Wang Y S, et al. Polymer Materials Science & Engineering, 2021, 37(1), 327 (in Chinese).
王曦宇, 李科, 王源升, 等. 高分子材料科学与工程, 2021, 37(1), 327.
5 Wang X H, Li X D, Zhang J L, et al. Packaging Engineering, 2022, 43(7), 282 (in Chinese).
王旭红, 李小东, 张峻岭, 等. 包装工程, 2022, 43(7), 282.
6 Wen Z M, Chen J Y, Wang Y P, et al. Materials Reports, 2022, 36(9), 20080043 (in Chinese).
温泽明, 陈剑英, 王越平, 等. 材料导报, 2022, 36(9), 20080043.
7 Xiong J J, Yan J J, Yang M. Journal of Biomedical Engineering Research, 2020, 39(4), 425 (in Chinese).
熊建钧, 严骏杰, 杨敏. 生物医学工程研究, 2020, 39(4), 425.
8 Liu M, Wang Y X, Kuai Y B, et al. Small, 2019, 15, 1905446.
9 Fu M M, Shen Y F, Zhou H, et al. Journal of Materials Science & Technology, 2023, 142, 22.
10 Bang J H, Suslick K S. Advanced Materials (Weinheim), 2010, 22, 1039.
11 Du H, Xu G C, Wang Z P, et al. Journal of Xinjiang Normal University(Natural Sciences Edition), 2008(1), 90 (in Chinese).
杜虹, 徐国财, 王贞平, 等. 新疆师范大学学报(自然科学版), 2008(1), 90.
12 Kumar V B, Gedanken A, Kimmel G, et al. Ultrasonics Sonochemistry, 2014, 21, 1166.
13 Yamaguchi A, Mashima Y, Iyoda T. Angewandte Chemie International Edition, 2015, 127, 13000.
14 Lin Y L, Liu Y, Genzer J, et al. Chemical Science, 2017, 8, 3832.
15 Sun X Y, Sun M M, Liu M M, et al. Nanoscale, 2019, 11, 2655.
16 Gan T S, Shang W H, Handschuh-Wang S, et al. Small, 2019, 15, 1804838.
17 Yan J J, Zhang X D, Liu Y, et al. Nano Research, 2019, 12, 1313.
18 Li X K, Li M J, Zong L, et al. Advanced Functional Materials, 2018, 28, 1804197.
[1] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[2] 杜辉, 陈巧, 刘婷, 贺毅, 金应荣. 非线性晶体和光电材料硒化镓的研究进展[J]. 材料导报, 2022, 36(5): 20080191-10.
[3] 季启政, 王一凡, 胡小锋, 李兴冀, 杨剑群, 刘尚合. 航天用氮化镓材料的研究进展[J]. 材料导报, 2022, 36(22): 22050023-6.
[4] 蒋骞, 张静, 谢亮, 孟军华, 张兴旺. 氧化镓薄膜外延生长及其应用研究进展[J]. 材料导报, 2022, 36(13): 20110062-11.
[5] 张旭, 董海亮, 贾志刚, 张爱琴, 梁建, 许并社. GaAs基大功率半导体激光器的研究进展[J]. 材料导报, 2022, 36(12): 20100023-7.
[6] 汪延明, 周智斌, 廖富达, 何鹏, 周波, 苗振林, 季辉. 氮化镓基金属基板蓝光LED变温变电流性能[J]. 材料导报, 2020, 34(Z2): 48-51.
[7] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[8] 廖亚龙, 曹磊, 王祎洋, 叶朝. 溶液中镓的提取与分离研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 133-138.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed