Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 29-32    https://doi.org/10.11896/j.issn.1005-023X.2017.02.006
  材料研究 |
过渡金属离子掺杂对磷酸铁锂性能的影响*
叶长福, 郑会元, 劳铭, 周文政, 郭进, 黎光旭
广西大学物理科学与工程技术学院,广西高校新能源材料及相关技术重点实验室, 南宁 530004;
Effect of Transition Metal Ions Doping on the Performance of LiFePO4/C Cathode Material
YE Changfu, ZHENG Huiyuan, LAO Ming, ZHOU Wenzheng, GUO Jin, LI Guangxu
Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology,College of Physics Science and Technology, Guangxi University, Nanning 530004;
下载:  全 文 ( PDF ) ( 1619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以碳酸锂、草酸亚铁、磷酸二氢铵、葡萄糖为原料,添加不同的过渡金属乙酸盐(乙酸锰、乙酸钴、乙酸镍、乙酸锌),在氩气保护下采用高温固相法制备LiFePO4/C复合材料。采用X射线衍射、扫描电子显微镜、同步热分析、恒电流充放电、电化学阻抗、循环伏安等方法研究掺杂金属离子及掺杂量对LiFePO4/C晶体结构和电化学性能的影响。结果表明, LiFe0.9M0.1PO4/C(M=Mn、Co、Ni、Zn)样品的晶体结构均与橄榄石型LiFePO4相同。掺杂过渡金属阳离子可以提高LiFePO4/C的还原电位,降低氧化电位,缩小氧化还原峰间距,提高化学反应的可逆性。掺杂后的样品在5C下的放电性能较好,以LiFe0.9Ni0.1PO4/C的放电容量最高,达到89 mAh/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶长福
郑会元
劳铭
周文政
郭进
黎光旭
关键词:  LiFePO4/C  复合材料  过渡金属  掺杂    
Abstract: By adding different transition metal acetates(manganese acetate, cobaltous acetate, nickel acetate, zinc acetate), LiFePO4/C composite materials were synthesized for lithium rechargeable batteries by high temperature solid-state reaction under the protection of argon, using Li2CO3, FeC2O4·2H2O, NH4H2PO4 , C6H12O6 (glucose) as raw materials. Effect of doping transition metal ions on crystal structure and performance of the sample was investigated by using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, galvanostatic charge discharge and electrochemical impedance spectroscopy, cyclic voltammetry. The results indicated that LiFe0.9M0.1PO4/C(M=Mn, Co, Ni, Zn) and LiFePO4 have the same crystal structure of olivine-style. Doping transition metal ions can increase the reduction potential of LiFePO4/C, decrease the oxidation potential, reduce the distance between redox peaks, and improve the reversibility of the chemical reaction. The doped samples have a better discharge performance at 5C, especially LiFe0.9Ni0.1PO4/C which has the highest discharge specific capacity reaching 89 mAh/g.
Key words:  LiFePO4/C    composite material    transition metal    doping
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TM912.9  
基金资助: *国家自然科学基金(61264006); 广西自然科学基金(2014GXNSFAA118340); 广西自然科学基金杰出青年基金(2013GXNSFGA019007)
作者简介:  叶长福:男,1986年生,硕士,研究方向为锂离子电池 E-mail:chfuye@163.com 黎光旭:通讯作者,1977年生,副教授,从事能源材料研究 E-mail:gxli@gxu.edu.cn
引用本文:    
叶长福, 郑会元, 劳铭, 周文政, 郭进, 黎光旭. 过渡金属离子掺杂对磷酸铁锂性能的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 29-32.
YE Changfu, ZHENG Huiyuan, LAO Ming, ZHOU Wenzheng, GUO Jin, LI Guangxu. Effect of Transition Metal Ions Doping on the Performance of LiFePO4/C Cathode Material. Materials Reports, 2017, 31(2): 29-32.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.006  或          https://www.mater-rep.com/CN/Y2017/V31/I2/29
1 Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nat Mater,2002,1(2):123.
2 Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J]. Solid State Ionics,2002,148(1-2):45.
3 Zaghib K, Charest P, Guerfi A, et al. LiFePO4 safe Li-ion polymer batteries for clean environment [J]. J Power Sources,2005,146(1-2):380.
4 Striebel K, Shim J, Sierra A, et al. The development of low cost LiFePO4-based high power lithium-ion batteries[J]. J Power Sources,2005,146(1-2):33.
5 Chen Z Y, Zhu H L, Zhu W, et al. Electrochemical performance of carbon nanotube-modified LiFePO4 cathodes for Li-ion batteries[J]. Trans Nonferrous Metals Soc China,2010,20(4):614.
6 Zhang X S, Tang R H, Xiao F M, et al. Effects of Cr doping on structure and electrochemical performance of LiFePO4/C[J]. Mater Rev:Res,2014,28(8):44(in Chinese).
章兴石,唐仁衡,肖方明,等.Cr3+对LiFePO4/C材料结构和电化学性能的影响[J].材料导报:研究篇,2014,28(8):44.
7 Feng X S, Mo X Y, Yu C J, et al. Study on preparation and modification of LiFePO4/C cathode material for lithium rechargeable batteries doping metal ions[J]. Mater Rev:Res,2012,26(10):33(in Chinese).
冯晓叁,莫祥银,俞琛捷,等.锂离子电池LiFePO4/C复合正极材料掺杂金属离子的制备及改性研究[J].材料导报:研究篇,2012,26(10):33.
8 Wang Y, Huang W H, Xiao Z P, et al. Study on synthesis and performances of lithium iron phosphate as cathode materials by Mg-doping[J]. Mater Rev:Res,2013,27(12):40(in Chinese).
王英,黄文浩,肖志平,等.镁掺杂改性磷酸铁锂正极材料及其性能研究[J].材料导报:研究篇,2013,27(12):40.
9 Cheng F,Wan W,Tan Z, et al. High power performance of nano-LiFePO4/C cathode material synthesized via lauric acid-assisted so-lid-state reaction[J]. Electrochim Acta,2011,56(8):2999.
10 Liu Y, Cao C, Li J. Enhanced electrochemical performance of carbon nanospheres-LiFePO4 composite by PEG based sol-gel synthesis[J]. Electrochim Acta,2010,55(12):3921.
11 Konarova M, Taniguchi I. Physical and electrochemical properties of LiFePO4 nanoparticles synthesized by a combination of spray pyrolysis with wet ball-milling[J]. J Power Sources,2009,194(2):1029.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[3] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[4] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[5] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[6] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[11] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[12] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[13] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[14] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[15] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed