Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 60-67    https://doi.org/10.11896/j.issn.1005-023X.2017.015.009
  材料综述 |
等离子喷涂用Y2O3稳定ZrO2空心球形粉末制备技术及涂层性能的研究现状*
赵钦1,2, 马国政2, 王海斗2, 李国禄1, 陈书赢2, 刘明2
1 河北工业大学材料科学与工程学院,天津 300130;
2 装甲兵工程学院装备再制造技术国防科技重点实验室,北京 100072;
Technological Advances for the Preparation of Yttria Stabilized Zirconia Hollow Spherical Powders and Performance of the Sprayed Coatings
ZHAO Qin1,2, MA Guozheng2, WANG Haidou2, LI Guolu1, CHEN Shuying2, LIU Ming2
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130;
2 National Key Lab for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072;
下载:  全 文 ( PDF ) ( 2056KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 原始粉末是影响等离子喷涂热障涂层组织结构和性能的主要因素之一。Y2O3稳定ZrO2 (Yttria stabilized zirconia,YSZ)空心球形粉末综合了熔融破碎粉末的预合金化效果好和团聚烧结粉末的流动性好的优点。采用该粉末制备的YSZ热障涂层的隔热性能、抗热震性能以及抗烧结性能等均显著提高,是目前综合性能最为优异的热障涂层之一。结合国内外研究情况,文章主要介绍了喷雾干燥法、等离子球化法以及模板法制备等离子喷涂用YSZ空心球形粉末的原理和优缺点;同时,对等离子喷涂过程中YSZ空心球形粉末熔滴的飞行特性、铺展凝固行为以及YSZ空心球形粉末制备涂层组织结构及性能的研究进行了概述;最后,指出了目前研究中存在的问题并对其未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵钦
马国政
王海斗
李国禄
陈书赢
刘明
关键词:  等离子喷涂  热障涂层  Y2O3稳定ZrO2    空心球形粉末    
Abstract: Powder morphology is one of the main factors which affects the microstructure and performance of plasma sprayed thermal barrier coatings. Yttria stabilized zirconia (YSZ) hollow spherical powders (HOSP) combine the advantages of good prealloying of fused-crushed powders and flowability of agglomerated-sintered powders. The sprayed coatings made from YSZ HOSP achieve significantly improved heat insulation, thermal shock resistance and sintering resistance, and thus have become the promising candidate fot thermal barrier coatings with excellent comprehensive performance. The principle, merits and drawbacks of the YSZ HOSP preparation methods, including spray drying, plasma spheroidization and template method, are summarized according to the current situation of domestic and foreign researches. Meanwhile, the movement characteristics and spreading solidification behavior of HOSP molten droplet, the microstructure and performance of sprayed coatings are discussed. Finally, the unresolved issues and the future development trend of this field are proposed.
Key words:  plasma spraying    thermal barrier coating    yttria stabilized zirconia    hollow spherical powder
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TG174.44  
基金资助: *国家自然科学基金(51675531;51675158);国家自然科学基金重点项目(51535011)
作者简介:  赵钦:男,1993年生,硕士研究生,主要从事表面工程研究 E-mail:zhaoqin4614@163.com 王海斗:通讯作者,男,1969年生,博士,研究员,主要从事表面工程和摩擦学研究 E-mail:wanghaidou@aliyun.com 李国禄:男,1966年生,博士,教授,博士研究生导师,主要从事表面工程和摩擦学研究 E-mail:liguolu@hebut.edu.cn
引用本文:    
赵钦, 马国政, 王海斗, 李国禄, 陈书赢, 刘明. 等离子喷涂用Y2O3稳定ZrO2空心球形粉末制备技术及涂层性能的研究现状*[J]. 《材料导报》期刊社, 2017, 31(15): 60-67.
ZHAO Qin, MA Guozheng, WANG Haidou, LI Guolu, CHEN Shuying, LIU Ming. Technological Advances for the Preparation of Yttria Stabilized Zirconia Hollow Spherical Powders and Performance of the Sprayed Coatings. Materials Reports, 2017, 31(15): 60-67.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.009  或          https://www.mater-rep.com/CN/Y2017/V31/I15/60
1 Evans A G, Clarke D R, Levi C G. The influence of oxides on the performance of advanced gas turbines [J]. J Eur Ceram Soc, 2008,28(7):1405.
2 Xing F, Kumar A, Huang Y, et al. Flameless combustion with li-quid fuel: A review focusing on fundamentals and gas turbine application [J]. Appl Energy,2017,193:28.
3 徐鹤山编著. 发动机叶片工程应用分析[M]. 北京:航空工业出版社.2011.
4 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science,2002,296(5566):280.
5 Zhou F, Wang Y, Wang L, et al. High temperature oxidation and insulation behavior of plasma-sprayed nanostructured thermal barrier coatings [J]. J Alloys Compd,2017,704:614.
6 Torigoe T, Okajima Y, Okada I, et al. Development of the advanced TBC for high efficiency gas turbine [C]∥THERMC 2016.Japan,2017:1980.
7 Clarke D R, Phillpot S R. Thermal barrier coating materials [J]. Mater Today,2005,8(6):22.
8 Kumar V, Balasubramanian B. Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications [J]. Particuology, 2016, 27:1.
9 Fauchais P, Vardelle M, Goutier S. Latest researches advances of plasma spraying: From splat to coating formation [J]. J Therm Spray Technol,2016,25:1.
10 Ning X J, Li C X, Li C J, et al. Effect of powder structure on microstructure and electrical properties of plasma-sprayed 4.5 mol% YSZ coating [J]. Vacuum,2006,80(11-12):1261.
11 Allen A J, Long G G, Boukari H, et al. Microstructural characte-rization studies to relate the properties of thermal-spray coatings to feedstock and spray conditions [J]. Surf Coat Technol,2001,146:544.
12 Li Fei, Li Yanhuai, Xu Kewei, et al. Research progress of the pre-paration of zirconia hollow sphere powder and the performance of its coating [J]. Rare Met Mater Eng,2014,43(12):3183(in Chinese).
李飞, 李雁淮, 徐可为, 等. 氧化锆空心球粉体制备及其涂层性能研究进展[J]. 稀有金属材料与工程,2014,43(12):3183.
13 唐逾, 陈东, 王兵, 等. 航空发动机用氧化锆喷涂粉末[C]∥第四届中国功能材料及其应用学术会议. 天津,2001:1699.
14 Bai Y, Zhao L, Tang J J, et al. Influence of original powders on the microstructure and properties of thermal barrier coatings deposited by supersonic atmospheric plasma spraying, part Ⅱ: Properties [J]. Ceram Int,2013,39(5):5113.
15 Zhang Xiaofeng,Zhou Kesong, et al . Properties of thermal barrier coatings made of different shapes of ZrO2-7wt%Y2O3 powders [J]. Rare Met Mater Eng,2015,44(6):1301(in Chinese).
16 Ercan B, Bowman K J, Trice R W, et al. Effect of initial powder morphology on thermal and mechanical properties of stand-alone plasma-sprayed 7 wt.% Y2O3-ZrO2 coatings [J]. Mater Sci Eng A,2006, s435-436(6):212.
17 Golman B, Julklang W. Simulation of exhaust gas heat recovery from a spray dryer [J]. Appl Therm Eng,2014,73(1):899.
18 Lukasiewicz S J. Spray-drying ceramic powders [J]. J Am Ceram Soc,1989,72(4):617.
19 Wang Aijuan, Lv Yupeng, Li Junming, et al. Fabrication of hydroxya-patite microspheres with different structure and related mechanism analysis [J]. J Chin Ceram Soc,2011,39(6):897(in Chinese).
王爱娟, 吕宇鹏, 李均明,等. 不同结构羟基磷灰石微球的制备及相关机理分析[J]. 硅酸盐学报,2011,39(6):897.
20 Sun R, Lu Y, Chen K. Preparation and characterization of hollow hydroxyapatite microspheres by spray drying method [J]. Mater Sci Eng C,2009,29(4):1088.
21 Nandiyanto A B D, Okuyama K. Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges [J]. Adv Powder Technol,2011,22(1):1.
22 Mahdjoub H, Roy P, Filiatre C, et al. The effect of the slurry formulation upon the morphology of spray-dried yttria stabilised zirco-nia particles [J]. J Eur Ceram Soc,2003,23(10):1637.
23 Bertrand G, Roy P, Filiatre C, et al. Spray-dried ceramic powders: A quantitative correlation between slurry characteristics and shapes of the granules [J]. Chem Eng Sci,2005,60(1):95.
24 Walker W J, Reed J S, Verma S K. Influence of slurry parameters on the characteristics of spray-dried granules [J]. J Am Ceram Soc,2010,82(7):1711.
25 Shoulders W T, Bizarri G, Bourret E, et al. Influence of process parameters on the morphology of spray-dried BaCl2 powders [J]. J Am Ceram Soc,2016,99(1):20.
26 李飞, 高波, 高勇, 等. 一种等离子喷涂用低成本空心球形YSZ粉末的制备方法, CN104129991A[P].2014.
27 Bai Y, Zhao L, Wang Y, et al. Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying [J]. J Alloys Compd,2015,632:794.
28 Vardelle M, Vardelle A, Fauchais P. Spray parameters and particle behavior relationships during plasma spraying [J]. J Therm Spray Technol,1993,2(1):79.
29 Roy P, Bertrand G, Coddet C. Spray drying and sintering of zirconia based hollow powders [J]. Powder Technol,2005,157(1):20.
30 Gaudon M, Djurado E, Menzler N H. Morphology and sintering behaviour of yttria stabilised zirconia(8-YSZ)powders synthesised by spray pyrolysis [J]. Ceram Int,2004,30(8):2295.
31 Longo F N, Bader Iii N F, Dorfman M R. Hollow sphere ceramic particles for abradable coatings: US, US4450184[P].1984.
32 Lu Chen. Preparation of high strength ceramic hollow spheres by thermal plasma [D]. Beijing: University of Chinese Academy of Sciences,2015(in Chinese).
陆晨. 热等离子体制备高强度陶瓷空心微球的研究[D]. 北京:中国科学院大学,2015.
33 Zhang Xiaofeng, Zhou Kesong, Chang Fa, et al. Yttria-stabilized-zirconia hollow spheres prepared by atmospheric plasma spray [J]. Particuology,2014,14(3):57.
34 Singh H, Sidhu B S, Puri D, et al. Use of plasma spray technology for deposition of high temperature oxidation/corrosion resistant coa-tings—A review [J]. Mater Corros,2015,58(2):92.
35 Gulyaev I P. Production and modification of hollow powders in plasma under controlled pressure [J].J Phys: Conference Series, 2013,441:303.
36 Pravdic G, Gani M S J. The formation of hollow spherical ceramic oxide particles in a d.c. Plasma [J]. J Mater Sci,1996,31(13): 3487.
37 Solonenko O P, Gulyaev I P, Smirnov A V. Plasma processing and deposition of powdered metal oxides consisting of hollow spherical particles [J]. Tech Phys Lett,2008,34(12):1050.
38 Solonenko O P, Gulyaev I P, Smirnov A V. Thermal plasma processes for production of hollow spherical powders: Theory and experiment [J]. J Therm Sci Technol,2011,6(2):219.
39 Solonenko O P. Criterion conditions for the formation of hollow microspheres from plasma-treated agglomerated particles [J]. Thermophy Aeromech,2014,21(6):735.
40 Gulyaev I. Experience in plasma production of hollow ceramic microspheres with required wall thickness [J]. Ceram Int,2015, 41(1):101.
41 Yan Chunmei, Luo Yijing, Zhao Xiaopeng, et al. The preparation research of inorganic hollow nanospheres [J]. J Funct Mater, 2006,37(3):345(in Chinese).
严春美, 罗贻静, 赵晓鹏. 无机材料纳米空心球的制备方法研究进展[J]. 功能材料,2006,37(3):345.
42 Antonelli D M. Hollow ordered zirconia microcage formation by spherical micelle templating with chelating triol surfactants [J]. Microp Mesop Mater,1999,28(3):505.
43 Schäfer C G, Vowinkel S, Hellmann G P, et al. A polymer based and template-directed approach towards functional multidimensional micro-structured organic/inorganic hybrid materials [J]. J Mater Chem C,2014,2(37):7960.
44 Ge S, Zhu W, Shao Q. Fabrication and characterization of hollow zirconia microspheres using calcium Carbonate as template [J]. Zeitschrift Für Physikalische Chemie,2016,230(11):1617.
45 Li S, Wang C A, Li S. Hierarchically porous YSZ hollow spheres with ultralow thermal conductivity [J]. Mater Res Bull,2014, 57(23):79.
46 Liu K, Li S, Wang C A. Fabrication and characterization of ZrO2 hollow spheres [J]. Key Eng Mater,2012,512-515: 253.
47 Zhou Peng. Preparation and characterization of zirconia ceramic hollow shells [D]. Harbin: Harbin Institute of Technology, 2009(in Chinese).
周鹏. 二氧化锆陶瓷空心微球的制备工艺与表征[D]. 哈尔滨:哈尔滨工业大学,2009.
48 Mcpherson R. The relationship between the mechanism of formation, microstructure and properties of plasma-sprayed coatings [J]. Thin Solid Films,1981,83(3):297.
49 Elsebaei A, Heberlein J, Elshaer M, et al. Comparison of in-flight particle properties, splat formation, and coating microstructure for regular and nano-YSZ powders [J]. J Therm Spray Technol,2010,19(1):2.
50 Gulyaev I P, Solonenko O P. Modelling of the behavior of hollow ZrO2, particles in plasma jet with regard to their thermal expansion [J]. Thermophys Aeromech,2013,20(6):769.
51 Shinoda K, Murakami H. Splat morphology of yttria-stabilized zirconia droplet deposited via hybrid plasma spraying [J]. J Therm Spray Technol,2010,19(3):602.
52 Kumar A, Gu S, Kamnis S. Simulation of impact of a hollow droplet on a flat surface [J]. Appl Phys A,2012,109(1):101.
53 Kumar A, Gu S. Porous surfaces via impinging and solidifying molten hollow melt droplets on substrates [J]. Trans Indian Inst Met,2012,65(6):771.
54 Kumar A, Gu S, Tabbara H, et al. Study of impingement of hollow ZrO2, droplets onto a substrate [J]. Surf Coat Technol,2013,220(15):164.
55 Chi W, Sampath S, Wang H. Ambient and high-temperature thermal conductivity of thermal sprayed coatings [J]. J Therm Spray Technol,2006,15(4):773.
56 Chi W, Sampath S, Wang H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings [J]. J Am Ceram Soc,2008,91(8):2636.
57 Yang Tan, Longtin J P, Sanjay Sampath, et al. Effect of the star-ting microstructure on the thermal properties of as-sprayed and thermally exposed plasma-sprayed YSZ coatings [J]. J Am Ceram Soc,2009,92(3):710.
58 Bertrand G, Bertrand P, Roy P, et al. Low conductivity plasma sprayed thermal barrier coating using hollow PSZ spheres: Correlation between thermophysical properties and microstructure [J]. Surf Coat Technol,2008,202(10):1994.
59 Kulkarni A, Wang Z, Nakamura T, et al. Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings [J]. Acta Mater,2003,51(9):2457.
60 Tan Y, Srinivasan V, Nakamura T, et al. Optimizing compliance and thermal conductivity of plasma sprayed thermal barrier coatings via controlled powders and processing strategies [J]. J Therm Spray Technol,2012,21(5):950.
61 Liu Y, Nakamura T, Srinivasan V, et al. Non-linear elastic properties of plasma-sprayed zirconia coatings and associated relationships with processing conditions [J]. Acta Mater,2007,55(14):4667.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[5] 孙斐, 赵洪峰, 缪奎. 钆掺杂的高非线性和低漏流SnO2基压敏电阻材料[J]. 材料导报, 2025, 39(2): 23110256-4.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[8] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[9] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[10] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[11] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[12] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[13] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[14] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[15] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed