Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 122-126    https://doi.org/10.11896/j.issn.1005-023X.2017.014.026
  材料研究 |
水化硅酸钙晶种对CaO-SiO2-H2O蒸压体系强度的影响及其机理分析*
张海东1,2, 韦江雄1,2, 赵志广1,2, 余其俊1,2, 李方贤1,2
1 华南理工大学材料科学与工程学院, 广州 510640;
2 广东省建筑材料低碳技术工程技术研究中心, 广州 510640;
Influence of Calcium Silicate Hydrate Seed on Compressive Strength of CaO-SiO2-H2O Autoclaved System and Its Mechanism Analysis
ZHANG Haidong1,2,WEI Jiangxiong1,2, ZHAO Zhiguang1,2, YU Qijun1,2, LI Fangxian1,2
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640;
2 Low Carbon Technology Engineering Research Center for Building Materials of Guangdong Province, Guangzhou 510640;
下载:  全 文 ( PDF ) ( 1595KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选取石灰与无定形二氧化硅为原料,利用水热合成法在不同热工条件下制备了水化硅酸钙晶种,研究水化硅酸钙晶种对硅酸盐蒸压制品强度的影响。通过化学分析法探讨了不同蒸压时间下水化硅酸钙晶种对粉煤灰反应程度的影响;利用X射线衍射(XRD)、电子扫描电镜(SEM-EDS)和压汞法(MIP)分析了晶种对不同蒸压时间下CaO-SiO2-H2O体系水化产物种类及形貌的影响。研究结果表明:采用钙硅物质的量比为1.0、水热合成温度低于150 ℃时制备的水化硅酸钙晶种提高CaO-SiO2-H2O蒸压体系强度最明显,水化硅酸钙晶种的掺入促进了粉煤灰中SiO2快速溶出以及水石榴石的分解,提高了水化产物含量;水化硅酸钙晶种的加入可以细化孔结构,使孔结构分布均匀,增加50 nm以下的无害孔及少害孔数量,减少大于200 nm的多害孔数量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张海东
韦江雄
赵志广
余其俊
李方贤
关键词:  水化硅酸钙  晶种  蒸压硅酸盐制品  粉煤灰  水化程度    
Abstract: The effect of calcium silicate hydrate seed on the CaO-SiO2-H2O hydrothermal reaction was studied. Calcium silicate hydrate seed were prepared by hydrothermal synthesis with lime and nano silica under different thermal conditions. Chemical analysis method was used for the determination of reactive degree of fly ash. The effect of calcium silicate hydrate seed on types and morphology of hydration products was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS). The distribution of pore size was investigated by mercury intrusion porosimetry (MIP). The results indicated that the compression strength of CaO-SiO2-H2O autoclaved system increased most obviously when mixed with calcium silicate hydrate and synthesized under the 150 ℃ with calcium silica ratio of 1.0. Calcium silicate hydrate seed promoted dissolution of SiO2PPP from fly ash and decomposition of hydrogarnet, and accelerated the generation of hydration products (mainly C-S-H(B) and tobermorite). Meamwhile, the pore structure was refined and the distribution of the pore size was more uniform with the addition of calcium silicate hydrate. The addition of calcium silicate hydrate caused the number of pores below 50 nm increase and the number of pores above 200 nm decrease, compared with the reference sample.
Key words:  calcium silicate hydrate    seed crystals    autoclaved silicate products    fly ash    degree of hydration
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TU 528  
基金资助: *广东省重大科技专项(2013A011401008);广东省省级科技计划项目(2013B090600056)
作者简介:  张海东:男,1990年生,硕士研究生,从事新型建筑材料的研究 E-mail:1562259606@qq.com 李方贤:通讯作者,男,1979年生,博士,副研究员,主要从事新型建筑材料的研究 E-mail:msfxli@scut.edu.cn
引用本文:    
张海东, 韦江雄, 赵志广, 余其俊, 李方贤. 水化硅酸钙晶种对CaO-SiO2-H2O蒸压体系强度的影响及其机理分析*[J]. 《材料导报》期刊社, 2017, 31(14): 122-126.
ZHANG Haidong,WEI Jiangxiong, ZHAO Zhiguang, YU Qijun, LI Fangxian. Influence of Calcium Silicate Hydrate Seed on Compressive Strength of CaO-SiO2-H2O Autoclaved System and Its Mechanism Analysis. Materials Reports, 2017, 31(14): 122-126.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.026  或          https://www.mater-rep.com/CN/Y2017/V31/I14/122
1 Alexanderson.Relations of structure and mechanical properties of autoclaved aerated concrete[J]. Cem Concr Compos,1979,4(9):507.
2 Sun Baozhen,Li Guangcai,Jia Chuanjiu. The relationship between the hydrates and the strength and shrinkage of autoclaved aerated concrete[J].J Chin Ceram Soc, 1983,11(1):77(in Chinese).
孙抱真,李广才,贾传玖.蒸压加气混凝土的水化产物与强度和收缩的关系[J].硅酸盐学报,1983,11(1):77.
3 Ríos C A,Williams C D,Fullen M A. Hydrothermal synthesis of hydrogarnet and tobermorite at 175 ℃from kaolinite and metakaolinite in the CaO-Al2O3-SiO2-H2O system: A comparative study[J].Appl Clay Sci,2009,43(2):228.
4 Mitasuda T,Taylor H F W. Influence of aluminium on the conversion of calcium silicate hydrate gels into 11 Å tobermorite at 90 ℃ and 120 ℃[J].Cem Concr Res,1975,5(3):203.
5 Al-Wakeel El, El-korashy S A.Reaction mechanism of hydrothermally treated CaO-SiO2-Al2O3 and CaO-SiO2-Al2O3-CaSO4 systems[J]. J Mater Sci,1996,31(7):1909.
6 Hong S Y,Glasser F P. Phase relations in the CaO-SiO2-H2O system to 200 ℃ at saturated steam pressure [J].Cem Concr Res,2004,34:1529.
7 Norifumi Isu, et al. Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete(Ⅰ) tobermorite formation[J]. Cem Concr Res,1995,25(2):243.
8 Al-Wakeel,El-Korashy S A,El-Hemaly S A.Promotion effect of C-S-H phase nuclei on building calcium silicate hydrate phase[J]. Cem Concr Compos,1999,21(3):173.
9 Wang Zheng,Yang Yingzi,Li Jiahe. Preparation of C-S-H-phase nuclei and its effects on compressive sthrenth of cement[J].Mater Sci Technol,2007,15(6):789(in Chinese).
王政,杨英姿,李家和.水化硅酸钙晶种的制备及对水泥强度的影响[J].材料科学与工艺,2007,15(6):789.
10 Yao Bingwen,et al. New hardening accelerator affecting concrete properties[J].Concrete,2005(9):49(in Chinese).
要秉文,等.新型早强剂对混凝土性能的影响研究[J].混凝土,2005(9):49.
11 Zhang Yunsheng,Hu Shuguang,Wang Fazhou.Enhancement of crystal-seed in concrete containing slay[J]. J Shandong Institute of Building Materials,2001(3):13(in Chinese).
张云升,胡曙光,王发洲.晶种在矿渣混凝土中的增强作用[J].山东建材学院学报,2001(3):13.
12 Peng Xiaoqin,Lan Cong,Wang Shuping. Effect of the C-S-H power on the hydration process and mechanism of cement[J].J Build Mater,2015(4):195(in Chinese).
彭小芹,兰聪,王淑萍.水化硅酸钙粉体对水泥水化反应过程及机理的研究[J].建筑材料学报,2015(4):195.
13 Wang Shaodong,Pu Xincheng. System analysis method for soluble silicon, soluble calcium and non reactive silica[J]. Build Energy Effciency,1989(1):44(in Chinese).
王邵东,蒲新成.可溶硅、可溶钙及未反应石英的系统分析方法[J].硅酸盐建筑制品,1989(1):44.
14 王立久.建筑材料工艺原理[M].北京:中国建材工业出版社,2006:51.
15 Wang Shaodong,Pu Xincheng. Investigation on kinetic sand mechanism of hydrothermal reaction in lime-sand system[J]. J Chinese Ceram Soc,1989,17(6):490(in Chinese).
王绍东, 蒲心诚.灰砂系统水热反应动力学和反应过程的研究[J].硅酸盐学报,1989,17(6):490.
16 Zhang Zhijie,Ke Changjun,Liu Ping’an.Analysis and mechanism of hydrogarnets formation and transformation in autoclaved reaction[J].J Instrumental Analys,2009,28(9):1008(in Chinese).
张志杰,柯昌君,刘平安.蒸压反应的水石榴石形成与转变的分析表征及机理研究[J].分析测试学报,2009,28(9):1008.
17 Peng Xiaoqin,Hang Jiamu. Analysis of hydrates of autoclaved silicated concrete and the qualitative relations of the hydrates and properties of concrete[J]. J Chinese Ceram Soc,2002,30(6):798(in Chinese).
彭小琴,黄佳木. 蒸压硅酸盐混凝土水化产物的分析及其与性能的定量关系[J].硅酸盐学报,2002,30(6):798.
[1] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[2] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[3] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[4] 谭洪波, 孔祥辉, 贺行洋, 李懋高, 苏英, 蹇守卫, 杨进. 化学外加剂对粉煤灰湿法细化活化的影响[J]. 材料导报, 2024, 38(5): 22100005-7.
[5] 张洪智, 梁取平, 邵明扬, 姜能栋, 杨梦宇, 隋高阳, 葛智. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 24020041-7.
[6] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[7] 冯虎, 闵智爽, 郭奥飞, 朱必洋, 陈兵, 黄昊. 超高韧性磷酸镁水泥基复合材料压缩力学性能研究[J]. 材料导报, 2024, 38(17): 23090058-12.
[8] 孟祥瑞, 刘源涛, 陈兵, 王立艳. 粉煤灰在磷酸镁水泥体系中的作用机制研究[J]. 材料导报, 2024, 38(17): 24010084-7.
[9] 袁小亚, 蒲云东, 桂尊曜, 张惠一, 杨森, 金湛, 曹蔚琦. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J]. 材料导报, 2024, 38(11): 23020017-8.
[10] 黄正峰, 欧忠文, 罗伟, 王飞, 王廷福. 聚醚型减缩剂延缓水泥水化的机理分析[J]. 材料导报, 2024, 38(10): 22060030-5.
[11] 倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
[12] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[13] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[14] 唐芮枫, 张佳乐, 王子明, 崔素萍, 王肇嘉, 兰明章. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 21090259-16.
[15] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed