Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 117-121    https://doi.org/10.11896/j.issn.1005-023X.2017.014.025
  材料研究 |
热处理对高铬铸铁基蜂窝陶瓷复合材料耐磨性的影响*
周谟金, 蒋业华, 温放放, 种晓宇
昆明理工大学材料科学与工程学院, 昆明 650093;
Effect of Heat Treatment on Wear Resistance of Honeycomb Ceramic Preform Reinforced Chromium Cast Iron Matrix Composite
ZHOU Mojin, JIANG Yehua, WEN Fangfang, ZHONG Xiaoyu
Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
下载:  全 文 ( PDF ) ( 2186KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过传统重力浇注工艺,用高铬铸铁金属溶液铸渗ZrO2增韧Al2O3(ZTA)陶瓷颗粒蜂窝状预制体,从而获得高铬铸铁基蜂窝陶瓷复合材料。将复合材料在930 ℃、980 ℃、1 030 ℃、1 080 ℃温度下淬火,并分别在230 ℃、330 ℃、430 ℃、530 ℃时回火,研究了热处理条件对高铬铸铁基蜂窝陶瓷复合材料组织及三体磨料磨损性能的影响。研究结果表明:在相同回火温度条件下,随着淬火温度的升高,复合材料硬度升高,其耐磨性也随之升高;在相同淬火温度条件下,随着回火温度的升高,材料的硬度及耐磨性能也随之升高,两者达到一定温度后其硬度及耐磨性都下降, 材料耐磨性与材料的硬度变化趋势一致。最终得到复合材料的最佳热处理工艺为:1 030 ℃×2 h, 空冷+530 ℃×0.5 h。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周谟金
蒋业华
温放放
种晓宇
关键词:  热处理  金属基复合材料  高铬铸铁  三体磨料磨损    
Abstract: The high chromium cast iron metal infiltrated the honeycomb preform of ZrO2 toughened Al2O3(ZTA) ceramic particles by the traditional gravity casting process and obtained the honeycomb ceramic particles reinforced high chromium cast iron matrix composite.The effect of heat treatment on the organization and properties of the three body abrasive wear about the composite was studied at the quenching temperature of 930 ℃, 980 ℃, 1 030 ℃, 1 080 ℃ and at the tempering temperature of 230 ℃, 330 ℃, 430 ℃, 530 ℃, respectively. The results show that at the same tempering temperature, the hardness of the composite increased and the wear resistance also increased with the increase of quenching temperature. While at the same quenching temperature, the hardness of the composite increased and the wear resistance increased with the increase of tempering temperature. The hardness and wear resistance were declined when the quenching temperature and the tempering temperature reached a certain value. The wear resistance of the composite changed consistently with the hardness. Eventually, the optimum heat treatment process for the composite was quenching at 1 030 ℃ 2 h, air cooling+tempering at 530 ℃×0.5 h.
Key words:  heat treatment    metal matrix composite    high chromium cast iron    three-body abrasive wear
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TB333  
  TG156.1  
基金资助: *国家自然科学基金(51571103)
作者简介:  周谟金:男,1988年生,博士研究生,研究方向为磨损理论及耐磨材料 E-mail:631795569@qq.com 蒋业华:通讯作者,男,1968年生,博士,教授,博士研究生导师,研究方向为磨损理论及耐磨材料 E-mail:1742944769@qq.com
引用本文:    
周谟金, 蒋业华, 温放放, 种晓宇. 热处理对高铬铸铁基蜂窝陶瓷复合材料耐磨性的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 117-121.
ZHOU Mojin, JIANG Yehua, WEN Fangfang, ZHONG Xiaoyu. Effect of Heat Treatment on Wear Resistance of Honeycomb Ceramic Preform Reinforced Chromium Cast Iron Matrix Composite. Materials Reports, 2017, 31(14): 117-121.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.025  或          https://www.mater-rep.com/CN/Y2017/V31/I14/117
1 Hutchings I M. Wear-resistant materials: Into the next century[J]. Mater Sci Eng A,1994,184(2):185.
2 Ibrahim I A, Mohamed F A, Lavernia E J. Particulate reinforced metal matrix composites-A review[J]. J Mater Sci,1991,26(5):1137.
3 Rosso M. Ceramic and metal matrix composites: Routes and properties[J]. J Mater Process Technol,2006,175(1):364.
4 Li Y, Gao Y. Three-body abrasive wear behavior of CC/high-Cr WCI composite and its interfacial characteristics[J]. Wear,2010,268(3):511.
5 Sevim I, Eryurek I B. Effect of abrasive particle size on wear resis-tance in steels[J]. Mater Des,2006,27(3):173.
6 Ting S U N, Song R, Xu W, et al. Abrasive wear behavior and me-chanism of high chromium cast iron[J]. J Iron Steel Res Int,2015,22(1):84.
7 Lee S K, Takahashi K, Yokouchi M, et al. High-temperature fatigue strength of crack-healed Al2O3 toughened by SiC whiskers[J]. J Am Ceram Soc,2004,87(7):1259.
8 Hu J, Li D Y, Llewellyn R. Computational investigation of microstructural effects on abrasive wear of composite materials[J]. Wear,2005,259(1):6.
9 Chung R J, Tang X, Li D Y, et al. Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance[J]. Wear,2013,301(1):695.
10 Ma S, Xing J, He Y, et al. Microstructure and crystallography of M7C3 carbide in chromium cast iron[J]. Mater Chem Phys,2015,161:65.
11 Upadhyaya D D, Dalvi P Y, Dey G K. Processing and properties of Y-TZP/Al2O3 composites[J]. J Mater Sci,1993,28(22):6103.
12 Rajendran S, Swain M V, Rossell H J. Mechanical properties and microstructures of co-precipitation derived tetragonal Y2O3-ZrO2-Al2O3 composites[J]. J Mater Sci,1988,23(5):1805.
13 Zheng K, Gao Y, Li Y, et al. Three-body abrasive wear resistance of iron matrix composites reinforced with ceramic particles[J]. Proceed Inst Mechan Eng Part J: J Eng Tribol,2014,228(1):3.
14 Kerkwijk B, Winnubst L, Mulder E J, et al. Processing of homogeneous zirconia-toughened alumina ceramics with high dry-sliding wear resistance[J]. J Am Ceram Soc,1999,82(8):2087.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[3] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[4] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[7] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[8] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[9] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[10] 王旭洁, 雒翠梅, 母军, 漆楚生. 热处理对木材多尺度结构及力学性能影响的研究现状[J]. 材料导报, 2024, 38(18): 23020251-8.
[11] 高吉昌, 门秀花, 姜帅, 付秀丽, 蒋振峰, 李艳. 高铬铸铁叶片堆焊工艺研究进展[J]. 材料导报, 2024, 38(17): 23050109-9.
[12] 张先满, 李星涛, 季坤鹏, 陈再雨, 罗洪峰. 原位生成周期性层片结构镀层及其在NaCl溶液中的腐蚀形貌[J]. 材料导报, 2024, 38(12): 22110026-7.
[13] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[14] 洪森, 刘九军, 汪云程, 吕亮, 廖桓毅, 罗屹峰, 罗张吉, 蒋耀年, 毛卫国. 超长时间热处理后镍-石墨封严涂层力学性能演变特性分析[J]. 材料导报, 2024, 38(11): 22100277-4.
[15] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed