Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 109-114    https://doi.org/10.11896/j.issn.1005-023X.2017.012.023
  材料研究 |
中温沥青中甲苯可溶组分的热解特性及热转化产物的性质*
朱亚明1, 赵雪飞1, 程俊霞1, 刘巍1, 吕君1,2, 王莹3
1 辽宁科技大学,辽宁省先进煤焦化及煤资源高效利用工程研究中心, 鞍山 114051;
2 齐齐哈尔大学化学与化学工程学院, 齐齐哈尔 161006;
3 鞍山兴德材料科技股份有限公司, 鞍山 114048
Pyrolysis Characteristics and Properties of Thermal Conversion Products on Toluene Soluble Component from Medium Pitch
ZHU Yaming1, ZHAO Xuefei1, CHENG Junxia1, LIU Wei1, LU Jun1,2, WANG Ying3
1 Engineering Research Center of Advanced Coal Coking and Efficient Use of Coal Resources, University of Science and Technology Liaoning, Anshan 114051;
2 College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006;
3 Anshan Xingde Material Technology Co. Ltd, Anshan 114048
下载:  全 文 ( PDF ) ( 1440KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以中温煤沥青的甲苯可溶组分为原料,进行元素分析和TG/DTG分析,并且利用偏光显微镜、X射线单晶衍射仪、拉曼光谱以及相应的分峰拟合等数学方法对热转化的产物进行研究。以实验获得的数据为基础,采用Flynn-Wall-Ozawa 法和Kissinger-Akahira-Sunose 法计算得到反应活化能,采用 Satava-Sastak法求解热解反应动力学参数。实验结果表明,中温沥青中甲苯可溶组分的热解反应活化能为E=88.48 kJ/mol,指前因子lgA=10.22,反应级数为2级,热解反应机理适合随机成核及其随后的增长模型。1 000 ℃焙烧后的炭化产物的光学显微组分含量为:镶嵌型23.74%,粗纤维型14.80%,细纤维17.88%,大片结构30.45%。由XRD研究结果可知,趋于规整结构的碳微晶含量为41.86%。Raman光谱分析研究结果表明,石墨结构的碳微晶含量为11.59%,缺陷石墨碳含量为79.31%,无定形碳含量为9.10%。热转化产物具有很好的可石墨化性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱亚明
赵雪飞
程俊霞
刘巍
吕君
王莹
关键词:  中温沥青  甲苯可溶组分  热转化  微观结构    
Abstract: Elemental composition, pyrolysis characteristics and microcrystalline structure of thermal conversion products on toluene soluble component from medium pitch were studied by elemental analysis, TG/DTG, polarizing microscope, X-ray diffraction, Raman spectrum and curve-fitting methods. The Flynn-Wall-Ozawa method and Kissinger-Akahira-Sunose method were used to calculate the pyrolysis activation energy of toluene soluble component. The Satava-Sastak method was used to investigate the pyrolysis kinetic parameters of toluene soluble component from medium pitch. Briefly, the activation energy (E) and pre-exponential factor (A) were E=88.48 kJ/mol and lgA=10.22, the reaction series was 2, and the pyrolysis mechanism model of toluene soluble is random nucleation and subsequent growth. What’s more, the optical microstructure of calcined thermal conversion product shows that the distribution of optical microstructure contents were mosaic structure (23.74%), crude fiber structure (14.80%), fine fiber structure (17.88%), and large structure (30.45%), respectively. Combined with XRD analysis and curve-fitting method, it was revealed that the content of ordered carbon crystallite (Ig) in the product was 41.86%. Raman spectrum and curve-fitted method proves that the content of ideal graphite carbon crystallite was 11.59%, the content of detect carbon crystallite was 79.31%, and the ratio of amorphous carbon was 9.10%. The thermal conversion product has a good graphitization ability.
Key words:  medium pitch    toluene soluble component    thermal conversion    microstructure
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TQ522.65  
基金资助: *国家自然科学基金(U1361126);教育部博士点基金(20132120110001)
通讯作者:  赵雪飞:通讯作者,男,1956年生,教授,博士研究生导师,主要研究方向为煤焦油深加工及煤基炭材料的研究 E-mail:zhao_xuefei@sohu.com   
作者简介:  朱亚明:男,1989年生,博士研究生,主要从事煤焦油沥青的深加工及沥青基炭材料的研究 E-mail:zhuyaming0504@163.com
引用本文:    
朱亚明, 赵雪飞, 程俊霞, 刘巍, 吕君, 王莹. 中温沥青中甲苯可溶组分的热解特性及热转化产物的性质*[J]. 《材料导报》期刊社, 2017, 31(12): 109-114.
ZHU Yaming, ZHAO Xuefei, CHENG Junxia, LIU Wei, LU Jun, WANG Ying. Pyrolysis Characteristics and Properties of Thermal Conversion Products on Toluene Soluble Component from Medium Pitch. Materials Reports, 2017, 31(12): 109-114.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.023  或          https://www.mater-rep.com/CN/Y2017/V31/I12/109
1 Burchell T D. Carbon materials for advanced technologies[M].New York:Pergamon,1999.
2 Mora E, Santamaría R, Blanco C, et al. Mesophase development in petroleum and coal-tar pitches and their blends [J]. J Anal Pyrol,2003,68-69:409.
3 Gray R J, Krupinski K C, Marsh H. Introduction to carbon techno-logies[M]. Alicante: Universidad Alicante,1997:329.
4 Ramjee S, Rand B, Foche W W. Low shear rheological behaviour of two-phase mesophase pitch [J]. Carbon,2015,82:368.
5 Bhatia G, Fitzer E, Kompalik D. Mesophase formation in defined mixtures of coal tar pitch fractions [J]. Carbon,1986,24:489.
6 Sun Q, Wang B C, Zhang H P, et al. The influence of a magnetic field during carbonization on the microstructure and electrical conductivity of needle cokes [J]. New Carbon Mater,2011,26:429.
7 Li G N, Peng Y L, Song S L, et al. Obtaining needle coke from coal liquefaction residue [J]. Chem Tech Fuels Oils,2012,48:349.
8 Mochida I, Yoon S H, Takano N, et al. Microstructure of mesophase pitch-based carbon fiber and its control [J]. Carbon,1996,34:941.
9 Yu B J, Wang C Y, Chen M M, et al. Two-step chemical conversion of coal tar pitch to isotropic spinable pitch [J]. Fuel Process Tech-nol,2012,104:155.
10 Li T Q, Liu X J, Wang C Y, et al. Structural characteristics of mesophase spheres prepared from coal tar pitch modified by phenolic resin [J]. Chinese J Chem Eng,2006,14:660.
11 Yang Y S, Wang C Y, Chen M M, et al. The role of primary quinoline insoluble on the formation of mescarbon microbeads [J]. Fuel Process Technol,2011,92:154.
12 Han Y J, Kim J, Yeo J S, et al. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch [J]. Carbon,2015,94:432.
13 Knight S A. Analysis of aromatic petroleum fraction by means of absorption mode carbon-13N.M.R. spectroscopy [J]. Chem Ind,1967,11:1920.
14 Clutter D R, Leonidas P, Stenger R L, et al. Nuclear magnetic resonance spectrometry of petroleum frantions. Carbon-13 and proton nuclear magnetic resonance characterizations in terms of average molecule parameters[J]. Anal Chem,1972,44:1395.
15 Li Chunfeng, Zhang Pengzhou, Qian Shu’an. Structural analysis of some domestic petroleum heavy residues by combined 1H-NMR-IR spectroscopy [J]. J Fuel Chem Technol,1981,10(4):353(in Chinese).
李春锋, 张蓬洲, 钱树安.用1H-NMR结合IR光谱解析法对我国若干重质油组成结构的研究[J].燃料化学学报,1981,10(4):353.
16 Huang X N, Kocaefe D, Kocafe Y, et al. Interaction of bio-coke with different coal tar pitches [J]. Fuel,2016,179:179.
17 Öner F O, Yürüm A, Yürüm A. Structural characterization of semicokes produced from the pyrolysis of petroleum pitches [J]. J Anal Appl Pyrol, 2015,111:15.
18 Lee S, Eom Y, Kim B Y, et al. The thermotropic liquid crystalline behavior of mesophase pitches wit different chemical structures [J]. Carbon,2015,81:694.
19 Álvarez P, Granda M, Sutil J, et al. A unified process for preparing mesophase and isotropic material from anthracene oil-based pitch [J]. Fuel Process Technol,2011,92:421.
20 Asenjo N G, Botas C, Blanco C, et al. Synthesis of activated carbons by chemical activation of new anthracene oil-based pitches and their optimization by response surface methodology [J]. Fuel Process Technol,2011, 92:1987.
21 Díez N, Álvarez P, Santamaría R, et al. Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre pre-paration [J]. Fuel Process Technol,2012,93:99.
22 Álvarez P, Granda M, Sutil J, et al. Characterization and pyrolysis behavior of novel anthracene oil derivatives [J]. Energy Fuels,2008,22:4077.
23 Morga R, Jolonek I, Kruszewska K, et al. Relationships between quality of coals, resulting cokes, and micro-Raman spectral characteristics of these cokes [J]. Int J Coal Geol,2015, 144-155:130.
24 Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information [J]. Carbon,2005,43:1731.
25 Morga R. Micro-Raman spectroscopy of carbonized semifusinite and fusinite [J]. Int J Coal Geol,2011,87:253.
26 Beyssac O, Goffe B, Petitet J P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy [J]. Spectrochim Acta A,2003,59:2267.
27 Tian L, Tahmasebi A, Yu J L. An experimental study on thermal decomposition behavior of magnesite [J]. J Therm Anal Calorim,2014,118:1577.
28 Zhu Ganyu, Li Huiquan, Wu Huixiong, et al. Non-isothermal decomposition kinetics of Methyl N-Phenyl Carbamate for preparation of Phenyl isocyanate [J].Chinese J Process Eng,2012,12(4):608(in Chinese).
朱干宇,李会泉,邬慧雄,等. 苯氨基甲酸甲酯热解制备苯基异氰酸酯的非等温动力学 [J]. 过程工程学报,2012,12(4):608.
29 Trittschack R, Grobéty B, Brodard P. Kinetics of the chrysotile and brucite dehydroxylation reaction: A combined non-isothermal/isothermal thermogravimetric analysis and high-temperature X-ray powder diffraction study [J]. Phys Chem Minerals,2014,41:197.
30 Manoj B, Kunjomana A G. Study of stacking structure of amorphous carbon by X-ray diffraction technique [J]. Int J Electrochem Sci,2012,7:3127.
31 Rantitsch G, Bhattacharyya A, Schenk J, et al. Assessing the quality of metallurgical coke by Raman spectroscopy [J]. Int J Coal Geol,2014,130:1.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[5] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[6] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[7] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[8] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[9] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[10] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[11] 张建伟, 李智睿, 曹克磊, 陈磊, 赵江雨. 某水库粉质粘土渗透特性及微观机理研究[J]. 材料导报, 2024, 38(24): 23090129-8.
[12] 石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
[13] 黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
[14] 周辉, 莫继良, 张蒙祺, 王好平, 陈伟, 龚柯梦. 人工漂珠制备吸声材料的降噪性能研究[J]. 材料导报, 2024, 38(22): 23110073-7.
[15] 甘如饴, 浮洁, 綦松, 余淼. 基于微流控系统的磁流变胶微观结构演化与磁敏行为分析[J]. 材料导报, 2024, 38(21): 23060186-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed