Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24120026-14    https://doi.org/10.11896/cldb.24120026
  无机非金属及其复合材料 |
高速铁路服役混凝土耐久性检测指标与现场检测方法研究进展
张大川1,2, 易忠来1,2,*, 李化建1,2, 杨志强1,2
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
2 中国铁道科学研究院集团有限公司高速铁路轨道系统全国重点实验室,北京 100081
Research Progress on Durability Evaluation Indicators and On-site Testing Methods for In-service Concrete in High-speed Railways
ZHANG Dachuan1,2, YI Zhonglai1,2,*, LI Huajian1,2, YANG Zhiqiang1,2
1 Railway Engineering Research Institute, China Academy of Railway Science Corporation Limited, Beijing 100081, China
2 State Key Laboratory of High Speed Railway Track System, China Academy of Railway Science Corporation Limited, Beijing 100081, China
下载:  全 文 ( PDF ) ( 42005KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现有规范已对高速铁路混凝土在材料设计、修补及防护阶段的耐久性提出要求,但在服役阶段,耐久性评估尚缺乏系统化的技术标准。服役阶段的耐久性评估不仅能够验证耐久性设计标准的有效性,还能够为修补及防护阶段耐久性标准的修订提供指导,对于实现全生命周期耐久性评估具有重要意义。本文基于混凝土结构极限状态耐久年限计算模型,系统、全面地确定了高速铁路服役混凝土耐久性检测指标,总结了各指标的现场检测方法。通过阐述各方法的检测原理,分析其影响因素、适用性、优缺点以及检测过程中的注意事项,明确了混凝土碳化深度、保护层厚度、强度、表面剥落情况、渗透性以及钢筋直径和锈蚀程度的优选现场检测方法,为制订高速铁路服役混凝土耐久性评定规范提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张大川
易忠来
李化建
杨志强
关键词:  高速铁路服役混凝土  耐久性  检测指标  现场检测方法    
Abstract: The current standards provide clear durability requirements for high-speed railway concrete during the material design, repair and protection phases. However, there is a lack of systematic technical standards for durability evaluation during the service phase. Evaluating durability during the service phase not only validates the effectiveness of durability design standards, but also guides the revision of durability standards in the repair and protection phase, which is crucial for achieving life-cycle durability evaluation. This paper systematically and comprehensively determines the durability testing indicators for in-service concrete in high-speed railways, based on the service life calculation model of the ultimate limit state for concrete structures. Furthermore, a comprehensive and systematic determination of durability testing indicators for in-service concrete in high-speed railways is conducted, along with an in-depth summary of on-site testing methods for each indicator. By elaborating on the detection principles, analyzing influencing factors, applicability, advantages, limitations, and key precautions during testing, this pceper identifies the optimal on-site testing methods for assessing concrete carbonation depth, cover thickness, strength, surface spalling, permeability, as well as rebar diameter and corrosion degree. The findings provide a practical reference for the development of durability assessment standards for in-service high-speed railway concrete.
Key words:  high-speed railway in-service concrete    durability    evaluation indicators    on-site detection methods
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52178260);铁科院院基金(2023YJ229)
通讯作者:  * 易忠来,中国铁道科学研究院集团有限公司研究员,主要从事铁路工程材料应用基础研究相关工作。yizhonglai@163.com   
作者简介:  张大川,博士,中国建筑材料科学研究总院有限公司博士后,主要从事水泥基材料耐久性和3D打印混凝土相关研究工作。
引用本文:    
张大川, 易忠来, 李化建, 杨志强. 高速铁路服役混凝土耐久性检测指标与现场检测方法研究进展[J]. 材料导报, 2026, 40(1): 24120026-14.
ZHANG Dachuan. Research Progress on Durability Evaluation Indicators and On-site Testing Methods for In-service Concrete in High-speed Railways. Materials Reports, 2026, 40(1): 24120026-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120026  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24120026
1 Ministry of Railways of the People's Republic of China. Code for durability design on concrete structure of railway TB 10005-2010, China Railway publishing House, China, 2011 (in Chinese).
中华人民共和国铁道部. 铁路混凝土结构耐久性设计规范. TB 10005-2010, 中国铁道出版社, 2011.
2 National Railway Administration of the People's Republic of China. Concrete for railway construction TB/T 3275-2018, China Railway Publishing House, 2019 (in Chinese).
国家铁路局. 铁路混凝土 TB/T 3275-2018, 中国铁道出版社, 2019.
3 National Railway Administration of the People's Republic of China. Standard for acceptance of concrete works in railway TB 10424-2018, China Railway publishing House, China, 2019(in Chinese).
国家铁路局. 铁路混凝土工程施工质量验收标准 TB 10424-2018, 中国铁道出版社, 2019.
4 National Railway Administration of the People's Republic of China. Technical specification for quality inspection of in-situ concrete in railway engineering TB 10433-2023, China Railway publishing House, China, 2023 (in Chinese).
国家铁路局. 铁路工程混凝土实体质量检测技术规程 TB 10433-2023, 中国铁道出版社, 2023.
5 Hu J, Tang K, Ji P. Quality Test, 2023, 41(5), 11 (in Chinese).
胡杰, 唐坤, 纪鹏远. 工程质量, 2023, 41(5), 11.
6 Hao T, Hui Y, Mei M, et al. Journal of Southeast University (National Science Editon), 2006(S2), 49(in Chinese).
郝挺宇, 惠云玲, 梅名虎, 等. 东南大学学报(自然科学版), 2006(S2), 49.
7 Wang J, Li H, Ma C, et al. Railway Sciences, 2024, 3(1), 59.
8 Ministry of Housing and Urban-rural Development of the People's Republic of China. Standard for design of concrete structure durability GB/T 50476-2019, China Architecture & Building Press, China, 2019 (in Chinese).
中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准 GB/T 50476-2019, 建筑工业出版社, 2019.
9 Ministry of Water Resources of the People's Republic of China. Specification for evaluating durability of hydraulic concrete structures SL 775-2018, China Water & Power Press, China, 2019 (in Chinese).
中华人民共和国水利部. 水工混凝土结构耐久性评定规范. SL 775-2018, 水利水电出版社, 2019.
10 Ministry of Housing and Urban-rural Development of the People's Republic of China. Standard for durability assessment of existing concrete structures GB/T 511355-2019, China Architecture & Building Press, China, 2019 (in Chinese).
中华人民共和国住房和城乡建设部. 既有混凝土结构耐久性评定标准 GB/T 511355-2019, 建筑工业出版社, 2019.
11 Jones M R, Dhir R K, Newlands M D. Materials & Structures, 2000, 33(226), 135.
12 Wang X, Val D V, Zheng L, et al. Construction and Building Materials, 2020, 243, 118259.
13 Wang X, Val D V, Zheng L, et al. Construction and Building Materials, 2018, 164, 12.
14 Wang X, Tu J. Journal of Harbin Engineering University, 2023, 44 (8), 1426 (in Chinese).
王小惠, 涂静婷. 哈尔滨工程大学学报, 2023, 44 (8), 1426.
15 Shi X Y. Damage analysis and theoretical model for carbonation depth prediction of concrete under the combined action of load and carbonation. Ph.D.Thesis, China Building Materials Academy, China, 2023 (in Chinese).
史鑫宇. 荷载与碳化作用下的混凝土损伤分析及碳化深度预测理论模型. 博士学位论文, 中国建筑材料科学研究总院, 2023.
16 Tian Y, Zhou Z, Li N, et al. Journal of Chang'an University (Natural Science Edition), 2024, 44(1), 68 (in Chinese).
田叶青, 周志军, 李楠, 等. 长安大学学报(自然科学版), 2024, 44(1), 68.
17 Mitchell M R, Link R E, Yu M, et al. Journal of Testing and Evaluation, 2010, 38, 102382.
18 Turcry P, Oksri-Nelfia L, Younsi A, et al. Cement and Concrete Research, 2014, 57, 70.
19 Chinchón-Payá S, Andrade C, Chinchón S. Cement and Concrete Research, 2016, 82, 87.
20 Vogler N, Lindemann M, Drabetzki P, et al. Cement and Concrete Composites, 2020, 109, 103565.
21 Yu M Y, Lee J Y, Chung C W. Journal of Testing and Evaluation, 2010, 38, 5, 534.
22 Villain G, Platret G. ACI Materials Journal, 2006, 103(4), 265.
23 Villain G, Thiery M. NDT & E International, 2006, 39(4), 328.
24 Morandeau A, Thiéry M, Dangla P. Cement and Concrete Research, 2014, 56, 153.
25 Zhang K, Yio M, Wang H, et al. Cement and Concrete Research, 2024, 175, 107358.
26 Shagñay S, Bautista A, Velasco F, et al. Boletín de la Sociedad Española de Cerámica y Vidrio, 2023, 62(5), 428.
27 Yue Y, Wang J, Basheer P, et al. Sensors and Actuators B:Chemical, 2018, 257, 635.
28 He X, Zhang C, Shang Y. Journal of Shijiazhuang Institute of Railway Technology, 2022, 21(1), 54 (in Chinese).
何小军, 张成维, 尚艳亮. 石家庄铁路职业技术学院学报, 2022, 21(1), 54.
29 Ren Z. Investigation of carbonation cracking behavior and carbonation mechanism of concrete. Master's Thesis, Shenzhen University, China, 2021 (in Chinese).
任志丽. 混凝土碳化开裂行为及碳化机理研究. 硕士学位论文, 深圳大学, 2021.
30 Dinh K, Gucunski N, Kim J, et al. NDT & E International, 2016, 83, 48.
31 Rasol M, Pérez-Gracia V, Solla M. NDT & E International, 2020, 115, 102293.
32 Liu J, Zollinger D, Lytton R. Journal of the Transportation Research Board, 2008, 2087(1), 68.
33 Hugenschmidt J, Mastrangelo R. Cement and Concrete Composites, 2006, 28(4), 384.
34 Dinh K, Gucunski N, Duong T. Automation in Construction, 2018, 89, 292.
35 Stryk J, Matula R, Pospisil K. Journal of Applied Geophysics, 2013, 97, 11.
36 Łukasz S, Łukasz K, GrzegorzŚ. Procedia Engineering, 2016, 156, 443.
37 Tarussov A, Vandry M, Haza A. Construction and Building Materials, 2013, 38, 1246.
38 Kuchipudi S, Ghosh D, Gupta H. Automation in Construction, 2022, 140, 104378.
39 Faris N, Zayed T, Abdelkader E, et al. Automation in Construction, 2023, 156, 105130.
40 Leucci G. Journal of Advanced Concrete Technology, 2012, 10, 411.
41 Malhotra V, Carino N. Handbook on nondestructive testing of concrete, CRC Press, USA, 2003, pp. 245.
42 Lu J. Development of rebar detector based on magnetic measurement. Master's Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
鲁健捷. 基于磁测量的钢筋探测仪研制. 硕士学位论文, 哈尔滨工业大学, 2017.
43 Ripka P, Lewis A. Journal of Electrical Engineering, 2006, 57(8/s), 175.
44 Alabi D, Voss M, Ferraro C, et al. Construction and Building Materials, 2023, 374, 130873.
45 Li Z, Jin Z, Xu X, et al. Construction and Building Materials, 2020, 245, 118472.
46 Ying W. Study on non-destructive inspection techniques of steel bars in reinforced concrete. Master's Thesis, Zhejiang University, China, 2011 (in Chinese).
应文武. 混凝土结构中钢筋无损检测技术的研究. 硕士学位论文, 浙江大学, 2011.
47 吴晓明, 赵晖, 刘冠国, 等. 江苏省公路学会优秀论文集(2006-2008), 江苏省交通科学研究院, 2009, pp.8.
48 Jia X, Xie R. Housing Science, 2010, 30(8), 22 (in Chinese).
贾鑫, 谢仁明. 住宅科技, 2010, 30(8), 22.
49 Jiang G, Xu Y. Construction Machinery, 2023(12), 59 (in Chinese).
江根明, 许野. 建筑机械, 2023(12), 59.
50 Alani A, Aboutalebi M, Kilic G. Journal of Applied Geophysics, 2013, 97, 45.
51 Varnavina A, Khamzin A, Sneed L, et al. Construction and Building Materials, 2015, 99, 26.
52 Feng S. Bayesian assessment of the in-service durability status of PC beams based on corrosion potential. Master's Thesis, Chongqing Jiaotong University, China, 2023 (in Chinese).
冯升阳. 基于锈蚀电位的在役PC梁耐久性状态Bayesian评估. 硕士学位论文, 重庆交通大学, 2023.
53 The Technical Liaision Committee. Concrete, 2000, 7, 34.
54 Pour-Ghaz M, Isgor O, Ghods P. Journal of Materials in Civil Engineering, 2009, 21(9), 467.
55 Stern M, Geary A. Journal of the Electrochemical Society, 1957, 104(1), 56.
56 Wu Z. Study on steel corrosion and service life of high strength coral aggregate seawater concrete structures. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020 (in Chinese).
吴彰钰. 高强全珊瑚海水混凝土结构的钢筋锈蚀与服役寿命研究. 硕士学位论文, 南京航空航天大学, 2020.
57 Li S, Kim Y, Jung S, et al. Sensors and Actuators B, 2007, 120, 368.
58 Živica V. Construction and Building Materials, 2000, 14(6-7), 351.
59 Klysz G, Balayssac J. Cement and Concrete Research, 2007, 37(8), 1164.
60 Laurens S, Balayssac J, Rhazi J. Materials and Structures, 2005, 38, 827.
61 Dérobert X, Iaquinta J, Klysz G, et al. NDT & E International, 2008, 41(1), 44.
62 Laurens S. Materials and Structures, 2002, 35(248), 198.
63 Senin S, Hamid R. Construction and Building Materials, 2016, 106, 659.
64 Hugenschmidt J, Loser R. Materials & Structures, 2008, 41(4), 785.
65 Tesic K, Baricevic A, Serdar M, et al. Automation in Construction, 2022, 143, 104548.
66 Kaplanvural İ, Özkap K, Pekşen E. Construction and Building Materials, 2021, 297, 123783.
67 Belli K, Wadia-Fascetti S, Rappaport C. Computer-Aided Civil and Infrastructure Engineering, 2007, 23(1), 3.
68 Faris N, Zayed T, Abdelkader E, et al. Automation in Construction, 2023, 156, 105130.
69 Han X, Wang P, Cui D, et al. Measurement, 2023, 209, 112526.
70 Zhang J, Liu C, Sun M, et al. Construction and Building Materials, 2017, 135, 68.
71 Fu C, Huang J, Dong Z, et al. Sensors and Actuators A:Physical, 2020, 315, 112371.
72 Li Z, Jin Z, Gao Y. Cement and Concrete Composites, 2020, 113, 103730.
73 Robles K, Gucunski N, Kee S. Construction and Building Materials, 2024, 411, 134512.
74 Icenogle P J, Rupnow T D. Transportation Research Record, 2012, 2290(1), 38.
75 Rupnow Tyson, Icenogle Patrick. Transportation Research Record, 2012, 2290(1), 30.
76 Cheytani M, Chan S L I. Case Studies in Construction Materials, 2021, 15, e00663.
77 Yang K, Basheer P, Bai Y, et al. NDT & E International, 2014, 64, 30.
78 Xu Z. Concrete resistivity monitorig and resistivity-based concrete performance characterization. Master's Thesis, Shenzhen University, China, 2018 (in Chinese).
徐宗南. 混凝土电阻率监测和基于电阻率的混凝土性能表征. 硕士学位论文, 深圳大学, 2018.
79 Weydert R, Gehlen C. Durability of Building Materials and Components, 1999, 8, 409.
80 Polder R. Construction and Building Materials, 2001, 15(2-3), 125.
81 Yu B, Liu J, Chen Z. Construction and Building Materials, 2017, 138, 101.
82 Hou L. Research for testing curve of detecting the concrete compressive strength by rebound method in henan area. Master's Thesis, Zhengzhou University, China, 2017 (in Chinese).
侯力凯. 河南地区回弹法检测混凝土强度测强曲线试验研究. 硕士学位论文, 郑州大学, 2017.
83 Sykora M, Diamantidis D, Holicky M, et al. Construction and Building Materials, 2018, 193, 196.
84 Kang X, Liu X, Feng X, et al. China Concrete and Cement Products, 2021(10), 16.
康希佞, 刘杏娟, 冯晓爽, 等. 混凝土与水泥制品, 2021(10), 16.
85 Trtnik G, Kavi F, Turk G. Ultrasonics, 2009, 49(1), 53.
86 Kang L. Experimental study of mix proportion and nondestructive test technology of high performance concrete. Master's Thesis, Shangdong University, China, 2007 (in Chinese).
康丽. 高性能混凝土配合比及无损检测技术的试验研究. 硕士学位论文, 山东大学, 2007.
87 Xiong J. Research for the main factors and testing curve of detecting the concrete compressive strength by rebound method. Master's Thesis, South China University of Technology, China, 2015 (in Chinese).
熊静. 回弹法评定混凝土抗压强度的主要影响因素及测强曲线的研究. 硕士学位论文, 华南理工大学, 2015.
88 Liu Q. Ultrasonic rebound method for testing the strength of recycled concrete. Master's Thesis, Hebei Agricultural University, China, 2019 (in Chinese).
刘倩. 超声回弹综合法检测再生混凝土强度试验研究. 硕士学位论文, 河北农业大学, 2019.
89 Xu Q. Research on nondestructive testing and machine learning prediction model of concrete strength for underwater structure. Master's Thesis, Fuzhou University, China, 2020 (in Chinese).
徐青青. 水下结构的混凝土强度无损检测和机器学习预测模型研究. 硕士学位论文, 福州大学, 2020.
90 Meng F. Apply research on concrete strength survey by ultrasonic-rebound combined method in Liaoning. Master's Thesis, Shenyang Jianzhu University, China, 2013 (in Chinese).
孟繁嵩. 辽宁地区超声回弹综合法检测混凝土强度应用研究. 硕士学位论文, 沈阳建筑大学, 2013.
91 Zhong Y, Wang P, Zhang B, et al. Journal of Building Engineering, 2023, 76, 107090.
92 Li S. Research on surface damage detection methods of concrete structures based on deep learning. Ph. D. Thesis, Dalian University of Technology, China, 2020 (in Chinese).
李生元. 基于深度学习的混凝土结构表面损伤检测方法研究. 博士学位论文, 大连理工大学, 2020.
93 Moses C, Robinson D, Barlow J. Earth-Science Reviews, 2014, 135, 141.
94 Fabbri S, Giambastiani B, Sistilli F, et al. Geomorphology, 2017, 295, 436.
95 Telling J, Lyda A, Hartzell P, et al. Earth-Science Reviews, 2017, 169, 35.
96 Zhang M. Study on terrestrial laser scanning for the pavement roughness inspection. Master's Thesis, China University of Mining & Technology, China, 2019 (in Chinese).
张梦虹. 地面三维激光扫描应用于路面平整度检测的研究. 硕士学位论文, 中国矿业大学, 2019.
97 Li D, Liu J, Feng L, et al. Measurement, 2020, 154, 107436.
98 Tian L. Research on evaluation method of measurement accuracy of hand-held laser scanner. Master's Thesis, Wuhan University, China, 2020 (in Chinese).
田柳. 手持激光扫描仪测量精度评定方法研究. 硕士学位论文, 武汉大学, 2020.
99 Gao Z. Characterization and mechanism of frost damage of restrained concrete under single-side salt freezing and thawing. Ph. D. Thesis, China Building Materials Academy, China, 2023 (in Chinese).
高志浩. 单面盐冻作用下约束态混凝土冻融损伤的表征及机理. 博士学位论文, 中国建筑材料科学研究总院, 2023.
100 Gao Z, Wang L, Wang Z, et al. Journal of Building Engineering, 2023, 76, 107051.
101 Erkal B, Hajjar J. Automation in Construction, 2017, 83, 285.
102 Multon S, Verdier J, Villain G, et al. Measurement, 2022, 196, 111204.
103 Kewalramani M, Khartabil A. Buildings, 2021, 11, 378.
104 Pilvar A, Ramezanianpour A, Rajaie H. Construction and Building Materials, 2015, 93, 790.
105 Schonlin K, Hilsdorf H. In:Katherine and Bryant Mather International Conference. USA, 1987.
106 Smith A. Concrete Construction, 1990, 35(9), 794.
107 Kresse P. Betonwerk+ Fertigteil-Technik, 1990, 56(2), 72.
108 Torrent R. Experimental Materials and Structures, 1992, 25, 358.
109 Multon S, Verdier J, Cagnon H, et al. Cement and Concrete Research, 2024, 178, 107455.
110 Milla J, Cavalline T, Rupnow T, et al. Advances in Civil Engineering Materials, 2021, 10(1), 172.
111 Jia L. Effects of concrete surface treatments on permeability of the surface layer of concrete. Master's Thesis, Hunan University, China, 2013 (in Chinese).
贾路风. 混凝土表面处理对表层混凝土抗渗性能影响研究. 硕士学位论文, 湖南大学, 2013.
112 Abbas A, Carcasses M, Ollivier J. Materials and Structures, 1999, 32, 3.
113 Fares M, Fargier Y, Villain G, et al. NDT & E International, 2016, 79, 150.
114 Andrzej M, Marta M. Procedia Engineering, 2016, 153, 483.
115 Yang J, Dong Q, Chen X, et al. Measurement, 2024, 224, 113863.
116 Brustad T, Pedersen A, Bang B. Transportation Research Interdisciplinary Perspectives, 2020, 7, 100206.
117 Nishio S. Quarterly Report of RTRI, 2017, 58(1), 36.
118 Nguyen M, Nakarai K, Kai Y, et al. Construction and Building Materials, 2020, 231, 117144.
119 Nguyen M, Nakarai K, Kubori Y, et al. Construction and Building Materials, 2019, 201, 430.
120 Yang J. Experimental research on the structure and the in-situ test method for the permeability of cover concrete. Ph. D. Thesis, Tsinghua University, China, 2008 (in Chinese).
杨进波. 混凝土保护层结构与渗透性现场检测方法的研究. 博士学位论文, 清华大学, 2008.
121 Rupnow T, Icenogle P. Transportation Research Record, 2012, 2290(1), 30.
122 Noort R, Hunger M, Spiesz P. Construction and Building Materials, 2016, 115, 746.
123 Basheer P, Gilleece P, Long A, et al. Cement and Concrete Composites, 2002, 24, 437.
124 Déroberta X, Latasteb J, Balayssacc J P, et al. NDT & E International, 2017, 89, 19.
125 Kalogeropoulos A, Kruk J, Hugenschmidt J. NDT & E International, 2013, 57, 74.
126 Al-Mattarneh H. Corrosion Science, 2016, 105, 133.
127 Al-Mattarneh H. Subsurface Sensing Technologies and Applications, 2001, 2(4), 377.
128 Torres-Luque M, Bastidas-Arteaga E, Schoefs F, et al. Construction and Building Materials, 2014, 68, 68.
129 Falciai R, Mignani A, Vannini A. Sensors and Actuators B:Chemical, 2001, 74(1-3), 74.
130 Tang J, Wang J. Smart Materials and Structures, 2007, 16(3), 665.
131 Lam C, Mandamparambil R, Tong S, et al. IEEE Sensors Journal, 2009, 9(5), 525.
132 Li H, Li D, Song G. Engineering Structures, 2004, 26, 1647.
133 Tan X, Du J, Zhang Q, et al. Construction and Building Materials, 2024, 422, 135789.
134 Piątek B, Howiacki T, Kulpa M, et al. Measurement, 2023, 221, 113480.
135 Liu Y, Bao Y. Measurement, 2023, 211, 112629.
136 Bai H, Guo D, Wang W, et al. Journal of Building Engineering, 2022, 54, 104668.
137 Ramani V, Kuang K, et al. Construction and Building Materials, 2021, 276, 122129.
138 Zamarreño C R, Rivero P J, Hernaez M, et al. Intelligent coatings for corrosion control, Buttrworth-Heinemann Press, UK, 2015, pp.603.
139 Xu L, Shi S, Huang Y, et al. Optics & Laser Technology, 2024, 174, 110553.
140 Fan L, Bao Y. Cement and Concrete Composites, 2021, 120, 104029.
141 Ke X. Talanta, 2020, 211, 120734.
142 Atkins C, Scantlebury J, Nedwell P, et al. Cement and Concrete Research, 1996, 26(2), 319.
143 Mahram V, Abdollahi H, Karimvand S. Microchemical Journal, 2022, 183, 108054.
[1] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[2] 贡力, 赵学昊, 许天乐, 卜延忠, 杨腾腾, 秦军, 党丹丹. 硫酸盐环境下沙漠砂混凝土抗冻耐久性及界面微观结构研究[J]. 材料导报, 2025, 39(22): 24100076-10.
[3] 董昊良, 李化建, 杨志强, 石贺男, 李良顺, 黄法礼, 王振, 易忠来. 高速铁路混凝土结构耐久性检(监)测与评定技术[J]. 材料导报, 2025, 39(21): 24100133-14.
[4] 张盼盼, 吕忠. 内置修复剂轻骨料水泥基材料自修复性能及机理研究进展[J]. 材料导报, 2025, 39(19): 24080181-9.
[5] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[6] 梁卓悦, 余波, 蔡盛源, 解威威. 基于材料成本与碳排放成本最小化的低碳混凝土配合比优化设计方法[J]. 材料导报, 2025, 39(14): 23120180-6.
[7] 王长龙, 付兴帅, 杨彩霞, 张凯帆, 白云翼, 路璐, 高占须, 郑永超, 刘治兵, 翟玉新, 刘枫. 钒钛铁尾矿制备矿山修复混凝土及性能研究[J]. 材料导报, 2025, 39(14): 24050044-6.
[8] 麻春英, 高俊, 沈明学. 超疏水表面机械稳定性研究现状及发展趋势[J]. 材料导报, 2025, 39(14): 24090242-11.
[9] 管焓宇, 张登宇, 欧阳金平, 张伟强, 刘志勇. 高性能水性环氧涂层及涂层钢筋应用研究进展[J]. 材料导报, 2025, 39(13): 24080081-10.
[10] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[11] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[12] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[13] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[14] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[15] 赵增丰, 蒲紫盈, 林璨, 肖建庄, 姚磊, 姬宸源, 刘雅婕. 免烧陶粒及陶粒混凝土性能研究进展[J]. 材料导报, 2024, 38(20): 23100019-13.
[1] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[2] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[3] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[4] SHANG Genfeng, HUANG Jiapeng, WANG Hang. Study on Cyclic Oxidation Behavior of Y and La Modified Ni-10Cr-5Al Alloys[J]. Materials Reports, 2018, 32(4): 584 -588 .
[5] LI Yanli, XU Zhuang, LI Hui, KONG Xiangdong, HAN Li, ZHANG Xuena. Preparation of ZnO Thin Films by Electron Beam Annealing Method[J]. Materials Reports, 2017, 31(2): 41 -45 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] CHEN Yajun, YU Jiaqi, ZHAO Jieyu, WANG Fusheng. Research and Development of High Temperature Solid Self-lubricanting Coating Prepared by Magnetron Sputtering[J]. Materials Reports, 2017, 31(3): 32 -37 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] XIE Fei, WANG Dan, WU Ming, ZONG Yue, YUAN Shijiao, SHEN Hongjuan, LI Rui. Effect of Sulfate Reducing Bacteria in Seawater on Corrosion Behavior of Q235 Steel[J]. Materials Reports, 2017, 31(8): 51 -55 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed