Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24100076-10    https://doi.org/10.11896/cldb.24100076
  无机非金属及其复合材料 |
硫酸盐环境下沙漠砂混凝土抗冻耐久性及界面微观结构研究
贡力*, 赵学昊, 许天乐, 卜延忠, 杨腾腾, 秦军, 党丹丹
兰州交通大学土木工程学院,兰州 730070
Frost Durability and Interfacial Microstructure of Desert Sand Concrete Under Sulphate Environment
GONG Li*, ZHAO Xuehao, XU Tianle, BU Yanzhong, YANG Tengteng, QIN Jun, DANG Dandan
School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 75160KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探明沙漠砂混凝土在我国西北盐渍干寒地区应用的合理性,设计了硫酸盐侵蚀条件下以沙漠砂掺量为变量的混凝土冻融循环试验,对沙漠砂掺量梯度为20%的混凝土进行称重并测定其自振频率以及养护期抗压强度等宏观性能指标,利用NMR、SEM和XRD等表征技术探究不同沙漠砂掺量梯度下混凝土抗盐冻耐久性退化机制及其微观结构演化规律。结果表明:同一养护阶段,混凝土抗压强度随沙漠砂掺量梯度的增大呈先下降后上升再下降的复杂变化趋势,掺量为40%时,其抗压强度达到峰值;随着盐冻循环试验的不断推进,当沙漠砂掺量由0%增加至40%时,混凝土的初始孔隙率减小,质量损失率和相对动弹性模量变化较小,而当沙漠砂掺量超过40%后,混凝土试件损伤程度随沙漠砂掺量的增加不断加重,可见沙漠砂掺量为40%时,混凝土抗盐冻性能最佳;通过SEM结果可以看出混凝土试件内部骨料与水泥浆体界面过渡区及裂缝是沙漠砂混凝土中较为薄弱的环节,试验后期混凝土裂缝延展的主要原因是试件内部孔隙处生成的钙矾石及石膏晶体等侵蚀产物作用。该研究可为沙漠砂混凝土在我国西北盐渍干寒地区水利工程中的研究与应用提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贡力
赵学昊
许天乐
卜延忠
杨腾腾
秦军
党丹丹
关键词:  沙漠砂  机制砂  混凝土  冻融循环  硫酸盐侵蚀  耐久性损伤    
Abstract: In order to investigate the rationality of desert sand concrete application in the salty and dry cold region of Northwest China, the freeze-thaw cycle test of concrete with desert sand dosage as a variable in sulphate environment was designed. In the test, weighed the concrete with 20% desert sand dosage gradient and determined its macroscopic performance indexes such as self-oscillation frequency and curing compressive strength, etc., and analyzed the deterioration process of salt-freezing resistance of concrete and its microstructural evolution law under the gra-dient of desert sand dosage by using characterization techniques such as NMR, SEM and XRD. The results show that at the same curing stage, the compressive strength of concrete with the increase of desert sand dosage gradient shows a complex trend of "first declines, then rises and then declines", and the compressive strength reaches the peak when the dosage is 40%. With the salt freezing cycle test, when the desert sand dosage increases from 0% to 40%, the initial porosity of concrete decreases, the mass loss rate and relative dynamic elastic modulus change is small, and when the desert sand dosage is more than 40%, the damage of concrete specimen increases with the increase of the desert sand do-sage, which can be seen that the best salt freezing resistance of the concrete is achieved when the desert sand dosage is 40%. Through the SEM results, it's found that the concrete specimen inside the interface between the aggregate and the cement paste interface transition zone and the crack is the weaker zone of the desert sand concrete. The main reason for the extension of concrete cracks in the late stage of the test is due to the erosion products such as calcium alumina and gypsum crystal aggregates generated at the internal pores of the specimen. These findings can provide a basis for the research and application of desert sand concrete in water conservancy projects in the salty and dry cold regions of northwest China.
Key words:  desert sand    machine-made sand    concrete    freeze-thaw cycle    sulphate erosion    durability damage
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52569022);甘肃省科技计划(23ZDFA002;24YFGA041);甘肃省产业支持计划项目(2025CYZC-019);甘南州科技重大专项(2025ZZ1S001);甘肃省交通运输厅科技项目(2024-31)
通讯作者:  *贡力,博士,甘肃民族师范学院校长,兰州交通大学教授、博士研究生导师。主要从事长距离输水工程结构性能理论及应用、输水工程材料耐久性等领域研究。2583546173@qq.com   
作者简介:  赵学昊,兰州交通大学土木工程学院硕士研究生,在贡力教授的指导下主要从事水工混凝土结构损伤和开裂机理等研究。
引用本文:    
贡力, 赵学昊, 许天乐, 卜延忠, 杨腾腾, 秦军, 党丹丹. 硫酸盐环境下沙漠砂混凝土抗冻耐久性及界面微观结构研究[J]. 材料导报, 2025, 39(22): 24100076-10.
GONG Li, ZHAO Xuehao, XU Tianle, BU Yanzhong, YANG Tengteng, QIN Jun, DANG Dandan. Frost Durability and Interfacial Microstructure of Desert Sand Concrete Under Sulphate Environment. Materials Reports, 2025, 39(22): 24100076-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100076  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24100076
1 Zhang B Z, Gong L, Du Q Y, et al. Materials Reports, 2022, 36(17), 108(in Chinese).
张秉宗, 贡力, 杜强业, 等. 材料导报, 2022, 36(17), 108.
2 Ma R, Li Z Q, Zhang H D, et al. Concrete, 2021(9), 156(in Chinese).
马瑞, 李志强, 张华东, 等. 混凝土, 2021(9), 156.
3 Wang X Y, Liu M H, Liu X, et al. Journal of Civil Engineering, 2022, 55(2), 23(in Chinese).
王雪艳, 刘明辉, 刘萱, 等. 土木工程学报, 2022, 55(2), 23.
4 Zhao Y M, Han Z L, Li H J, et al. China Railway, 2019(8), 1(in Chinese).
赵有明, 韩自力, 李化建, 等. 中国铁路, 2019(8), 1.
5 Li H, Huang F, Cheng G, et al. Construction and Building Materials, 2016, 109, 41.
6 Wang Z, Li H J, Huang F L, et al. Journal of Building Materials, 2023, 26(5), 516(in Chinese).
王振, 李化建, 黄法礼, 等. 建筑材料学报, 2023, 26(5), 516.
7 Xu P H. Green Building Materials, 2017(12), 150(in Chinese).
徐潘宏. 绿色环保建材, 2017(12), 150.
8 Gong L, Bu Y Z, Xu T L, et al. Case Studies in Construction Materials, 2024, 21, 3896.
9 Gong L, Liang Y, Gong X L, et al. Journal of Applied Basic and Engineering Sciences, 2023, 31(4), 1006(in Chinese).
贡力, 梁颖, 宫雪磊, 等. 应用基础与工程科学学报, 2023, 31(4), 1006.
10 Zhou M H, Dong W. Journal of Building Engineering, 2023, 77, 107515.
11 Zhang M H, Zhu X Z, Shi J Y, et al. Construction and Building Materials, 2022, 327, 127014.
12 Liu H F, Ma Y C, Ma Y L, et al. Advances in Civil Engineering, 2021, 2021, 6620058.
13 Dong W, Shen X, Xue H, et al. Construction and Building Materials, 2016, 123, 792.
14 He L J, Jiang Y J, Meng H. Sichuan Building Materials, 2023, 49(6), 12(in Chinese).
何莉瑾, 姜彦杰, 孟浩. 四川建材, 2023, 49(6), 12.
15 Jiang Y J, Liu H T, Liu H F, et al. Materials Reports, 2024, 39(7), 119(in Chinese).
姜彦杰, 刘浩天, 刘海峰, 等. 材料导报, 2024, 39(7), 119.
16 Bai J W, Zhao Y R, Shi J N, et al. Construction and Building Materials, 2022, 327, 126885.
17 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for the design of ordinary concrete proportions:JGJ55-2011, China Construction Industry Press, China, 2011, pp.6(in Chinese).
中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程:JGJ55-2011, 中国建筑工业出版社, 2011, pp.6.
18 Minister of Water Resources of the People's Republic of China. Test procedure for hydraulic concrete:SL/T 352-2020, China Water Conservancy and Hydropower Press, China, 2020, pp.3(in Chinese).
中华人民共和国水利部. 水工混凝土试验规程:SL/T 352-2020, 中国水利水电出版社, 2020, pp.3.
19 Gong L, Liang Y T, Yu X B, et al. KSCE Journal of Civil Engineering, 2023, 27(7), 2993.
20 Zhang H M, Zheng S H, Jing P Y, et al. Journal of Henan University of Science and Technology (Natural Science Edition), 2023, 44(6), 77(in Chinese).
张慧梅, 郑世航, 景盼园, 等. 河南科技大学学报(自然科学版), 2023, 44(6), 77.
21 GB/T 14684-2022, Sand for construction, China Standard Press, China, 2022, pp.2(in Chinese).
GB/T 14684-2022, 建设用砂, 中国标准出版社, 2022, pp.2.
22 Dong W, Wang J F. Construction and Building Materials, 2024, 411, 134593.
23 Lyu S H, Shaghureti-Baikaiyi, Alimas Yerbrati, et al. Silicate Bulletin, 2022, 41(07), 2321(in Chinese).
吕胜辉, 沙吾列提·拜开依, 阿力马斯·叶尔布拉提, 等. 硅酸盐通报, 2022, 41(7), 2321.
24 Gong L, Yu X B, Liang Y T, et al. Case Studies in Construction Materials, 2023, 18, e01762.
25 Liu H F, Liu Y J, Jiang Y J, et al. Industrial Building, 2023, 53(S1), 616 (in Chinese).
刘海峰, 刘一江, 姜彦杰, 等. 工业建筑, 2023, 53(S1), 616.
26 Meng H, Yang W W, Liu H F. Ningxia Engineering Technology, 2023, 22(1), 49(in Chinese).
孟浩, 杨维武, 刘海峰. 宁夏工程技术, 2023, 22(1), 49.
27 Li Y G, Zhang H M, Chen S J, et al. Journal of Composite Materials, 2023, 40(4), 2331(in Chinese).
李玉根, 张慧梅, 陈少杰, 等. 复合材料学报, 2023, 40(4), 2331.
28 Li Y G, Zhang H M, Chen S J, et al. Construction and Building Materials, 2022, 340.
29 Xue H J, Shen X D, Zou C X, et al. Journal of Building Materials, 2019, 22(2), 199 (in Chinese).
薛慧君, 申向东, 邹春霞, 等. 建筑材料学报, 2019, 22(2), 199.
30 Duan A. Study on the constitutive relationship of concrete subjected to freezing and thawing and numerical simulation of freezing and thawing process. Ph. D. Thesis, Tsinghua University, China, 2009(in Chinese).
段安. 受冻融混凝土本构关系研究和冻融过程数值模拟. 博士学位论文, 清华大学, 2009.
31 Zhang H M, Wang D, Jing P Y. Journal of Henan University of Science and Technology (Natural Science Edition), 2023, 44(3), 70(in Chinese).
张慧梅, 王丹, 景盼园. 河南科技大学学报(自然科学版), 2023, 44(3), 70.
32 Qin P L, He M S, Yuan K, et al. Journal of Shihezi University (Natural Science Edition), 2023, 41(5), 568 (in Chinese).
秦鹏亮, 何明胜, 袁康, 等. 石河子大学学报(自然科学版), 2023, 41(5), 568.
33 Zhou M H, Dong W. Journal of Building Engineering, 2023, 80, 108067.
34 Gong L, Zhao X H, Bu Y Z, et al. Structures, 2024, 70, 107875.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[3] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[4] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[5] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[6] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[7] 朱文虎, 孙奉琳, 王蓉, JOO SangWoo, 丛晨浩, 李欣琳. 基于丝网印刷制备的导电水凝胶基可拉伸应变传感器[J]. 材料导报, 2025, 39(7): 24010128-6.
[8] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[9] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[10] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[11] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[12] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[13] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[14] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[15] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed