Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 24010080-6    https://doi.org/10.11896/cldb.24010080
  无机非金属及其复合材料 |
干湿交替下损伤劣化混凝土内硫酸根离子二维传输行为的数值模拟
殷光吉1, 单紫琪1, 温小栋1,*, 邵璟璟1, 汤玉娟2, 王楠2
1 宁波工程学院建筑与交通工程学院,浙江 宁波 315211
2 扬州市职业大学土木工程学院,江苏 扬州 225009
Numerical Simulation on 2D Transport Behavior of Sulfate Ions in Deteriorated Concrete Under Repetitive Wetting-Drying Alternations
YIN Guangji1, SHAN Ziqi1, WEN Xiaodong1, *, SHAO Jingjing1, TANG Yujuan2, WANG Nan2
1 School of Civil and Transportation Engineering, Ningbo University of Technology, Ningbo 315211, Zhejiang, China
2 School of Civil and Engineering, Yangzhou Polytechnic College, Yangzhou 225009,Jiangsu, China
下载:  全 文 ( PDF ) ( 10498KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 干湿交替硫酸盐服役环境下混凝土的耐久性遭受严峻挑战,研究该服役条件下混凝土中腐蚀离子的传输进程具有重要意义。基于非饱和混凝土内硫酸根离子的传输机理,考虑化学反应的离子消耗作用以及化学损伤对离子扩散性能的影响,建立了干湿循环条件下混凝土棱柱内硫酸盐二维传输-化学模型。采用有限差分法的交替方向隐式格式,对传输模型进行数值求解。通过MATLAB编程计算开展模型验证,模型计算结果与试验测试数据吻合较好;在此基础上,数值模拟海洋潮汐环境下非饱和混凝土柱内水分与硫酸根离子的传输行为。结果表明,干燥阶段水分并非简单地向环境蒸发,而是同时向棱柱表层和内部传输;而硫酸根离子浓度外高内低,其分布规律与持续浸泡的情况相似,且棱柱内无明显的离子对流区和扩散区分界。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷光吉
单紫琪
温小栋
邵璟璟
汤玉娟
王楠
关键词:  干湿交替  混凝土  硫酸根离子  传输-反应模型  数值求解    
Abstract: The sulphatic service environment with repetitive wetting-drying alternations will bring about severe impact to concretes' durability, so it is of great importance to study the transport mechanism of corrosive ions in concrete subjected to that working condition. Based on the transport mechanism of sulfate ions in unsaturated concrete, a 2D transport-reaction model of sulfate in concrete prism under repetitive wetting-drying alternation was established. In the model, the ion consumption caused by chemical reactions and the influence of chemical damage on ion diffusivity were taken into account. The alternating direction implicit scheme of finite difference method was used to numerically solve the transport model. The model validation was carried out by MATLAB programming, and the calculated results coincided well with the experimental data. On this basis, a numerical simulation was performed to investigate the transport behavior of water and sulfate ions in the unsaturated concrete prism under marine tidal circumstance. The results indicated that, water does not simply evaporate into environment at the drying stage, but is simultaneously transported to the surface layer and the interior of prism. The sulfate ion concentration exhibits a decreasing trend from surface to centre, which is similar to that under continuous immersion, and there is no obvious boundary between ion convection and diffusion zones inside the prism.
Key words:  repetitive wetting-drying alternation    concrete    sulfate ion    transport-reaction model    numerical solution
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TB321  
基金资助: 国家自然科学基金青年项目(52308262);教育部“春晖计划”合作科研项目(HZKY20220199) ;宁波市自然科学基金项目(2023J176);国家级大学生创新创业训练计划项目(202311058013);浙江省教育厅科研项目(Y202456336)
通讯作者:  *温小栋,通信作者,宁波工程学院建筑与交通工程学院教授、硕士研究生导师。1999年武汉工业大学建筑工程专业本科毕业,2001年云南农业大学农田水利工程专业硕士毕业,2007年武汉理工大学建筑材料学与工程专业博士毕业后到宁波工程学院工作至今。目前主要从事混凝土耐久性、先进水泥基材料、废弃物建材化利用等方面的研究工作。发表论文100余篇。nbutlsjc@126.com   
作者简介:  殷光吉,宁波工程学院建筑与交通工程学院副教授、硕士研究生导师。2012年南京理工大学土木工程专业本科毕业,2019年南京理工大学材料科学与工程专业博士毕业后到宁波工程学院工作至今。主要从事新型水泥基材料、混凝土材料及结构耐久性、结构性能评估及寿命预测等方面的研究工作。发表论文30余篇。
引用本文:    
殷光吉, 单紫琪, 温小栋, 邵璟璟, 汤玉娟, 王楠. 干湿交替下损伤劣化混凝土内硫酸根离子二维传输行为的数值模拟[J]. 材料导报, 2024, 38(19): 24010080-6.
YIN Guangji, SHAN Ziqi, WEN Xiaodong, SHAO Jingjing, TANG Yujuan, WANG Nan. Numerical Simulation on 2D Transport Behavior of Sulfate Ions in Deteriorated Concrete Under Repetitive Wetting-Drying Alternations. Materials Reports, 2024, 38(19): 24010080-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24010080  或          http://www.mater-rep.com/CN/Y2024/V38/I19/24010080
1 Zuo X B, Zheng Z K, Li X N, et al. Engineering Failure Analysis, 2023, 151, 107419.
2 Nie D, Jin W Q, Dong L, et al. Acta Materiae Compositae Sinica, 2023, 40(9), 5276 (in Chinese).
聂丹, 靳文强, 董磊, 等. 复合材料学报, 2023, 40(9), 5276.
3 Zhang C L, Chen W K, Mu S, et al. Construction and Building Materials, 2021, 285, 122806.
4 Liu Y S, Pang J Y. Acta Materiae Composite Sinica, 2024, 41. (in Chinese).
刘雨姗, 庞建勇. 复合材料学报, 2024, 41
5 Jiang J Y, Zheng H R, Sun G W, et al. Journal of Building Materials, 2023, 26(10), 1047 (in Chinese).
蒋金洋, 郑皓睿, 孙国文, 等. 建筑材料学报, 2023, 26(10), 1047.
6 Liu H J, Dai B, Sheng L C, et al. Periodical of Ocean University of China, 2017, 47(S), 103 (in Chinese).
刘红军, 戴波, 盛连成, 等. 中国海洋大学学报, 2017, 47(增刊), 103.
7 Zou D J, Qin S S, Liu T J, et al. Cement and Concrete Research, 2021, 139, 106284.
8 Nie S F, Ma Y X, Guo J Q, et al. Water Resources and Hydropower Engineering, 2022, 53(11), 186 (in Chinese).
聂思远, 马艳霞, 郭佳庆, 等. 水利水电技术(中英文), 2022, 53(11), 186.
9 Samson E, Marchand J. Computers and Structures, 2007, 85, 1740.
10 Guan B W, Zhang S W, Wu J Y, et al. Materials Reports, 2024, 38(15), 23040046 (in Chinese).
关博文, 张硕文, 吴佳育, 等. 材料导报, 2024, 38(15), 23040046.
11 Wang P G, Mo R, Li S, et al. Construction and Building Materials, 2021, 288, 123121.
12 Li D W, Li L Y, Li P, et al. Marine Structures, 2022, 84: 103240.
13 Wang L C, Bao J W. Journal of Hydraulic Engineering, 2016, 47(8), 986 (in Chinese).
王立成, 鲍玖文. 水利学报, 2016, 47(8), 986.
14 Zuo X B, Sun W, Li H, et al. Advances in Cement Research, 2012, 24 (3), 145.
15 Zhang M, Qin S S, Lyu H X, et al. Engineering Fracture Mechanics, 2023, 293, 109726.
16 Yin G J, Zuo X B, Tang Y J, et al. Ocean Engineering, 2017, 142, 115.
17 Qiao H X, Qiao G B, Lu C G. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(3), 119 (in Chinese).
乔宏霞, 乔国斌, 路承功. 华中科技大学学报(自然科学版), 2021, 49(3), 119.
18 Wan K S, Li L, Sun W. Cement and Concrete Research, 2013, 53, 44.
19 Yin G J, Zuo X B, Tang Y J, et al. Computers and Concrete, 2017, 19(2), 143.
20 Wang K, Guo J J, Yang L. Construction and Building Materials, 2021, 302, 124418.
21 金伟良, 张奕, 卢振勇, 等. 硅酸盐学报, 2008, 36(10), 1362 (in Chinese).
Jin W L, Zhang Y, Lu Z Y, et al. Journal of the Chinese Ceramic Society, 2008, 36(10), 1362.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[5] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[6] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[7] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[10] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[11] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[12] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[13] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[14] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[15] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed