Analysis of Flexural Performance and Failure of Glass Fiber Reinforced Methacrylate-based Ultraviolet Cured-in-Place Pipe Materials
XIA Yangyang1,2,3, FANG Hongyuan1,2,3, ZHANG Chao1,2,3,*, WANG Cuixia1,2,3, SHI Mingsheng1,2,3
1 School of Water Conservancy and Transportation/Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China 2 National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou 450001, China 3 Collaborative Innovation Center for Disaster Prevention and Control of Underground Engineering Jointly Built by Provinces and Ministries, Zhengzhou 450001, China
Abstract: Ultraviolet curable in-place pipe (UV-CIPP) is a glass fiber composite material. Its flexural performance is an important reference index necessary to evaluate the effectiveness of pipeline rehabilitation and material optimization design. The flexural performance and failure mechanism of glass fiber-reinforced methacrylate-based UV-CIPP materials were investigated based on a three-point bending test that incorporated HD video and SEM observations, and accounted for the effects of curing time, curing distance, UV lamp power, and material thickness. Failure of glass fiber-reinforced methacrylate-based UV-CIPP materials was divided into three stages:elastic deformation, matrix cracking, and glass fiber fracture. Matrix cracking, debonding delamination, and fiber pull-out fracture caused bending failures in this material. Under the influence of a single variable, the flexural strength and flexural modulus of UV-CIPP materials firstly increased and then decreased with additional curing time, curing distance, and UV lamp power, but gradually decreased with increased material thickness. This study provides a reference basis for optimal UV-CIPP material design while laying an important foundation to develop of domestic UV-CIPP materials.
通讯作者:
*张超,郑州大学水利科学与工程学院副教授、硕士/博士研究生导师。2008年西北农林科技大学土木工程专业本科毕业,2011年西北农林科技大学结构工程专业硕士毕业,2018年德国魏玛包豪斯大学结构工程博士毕业,2019年到郑州大学工作至今。目前主要从事工程修复材料的多尺度物理力学性能与提升和先进结构材料的设计与应用等方面的研究工作。发表论文40余篇,包括Construction and Building Materials、Engineering Geology、Nanoscale、International Journal of Fatigue、《岩土力学》等,申请和授权专利20余项。chao.zhang.zzu@outlook.com
作者简介: 夏洋洋,2016年7月、2019年7月分别于黄河科技学院和郑州大学获得工学学士学位和硕士学位。现为郑州大学水利科学与工程学院工程安全与防护专业博士研究生,在张超教授的指导下进行研究。目前主要从事城市埋地管道非开挖修复新材料、技术及理论研究。发表论文20余篇,包括Construction and Building Materials、Computers and Geotechnics、《岩土工程学报》《岩土力学》《同济大学学报 (自然科学版)》《中南大学学报 (自然科学版)》《哈尔滨工业大学学报》等,申请专利30余项,其中授权发明专利7项,授权实用新型专利24项。
引用本文:
夏洋洋, 方宏远, 张超, 王翠霞, 石明生. 玻纤增强甲基丙烯酸酯基UV-CIPP材料抗弯性能及失效分析[J]. 材料导报, 2024, 38(12): 22060190-7.
XIA Yangyang, FANG Hongyuan, ZHANG Chao, WANG Cuixia, SHI Mingsheng. Analysis of Flexural Performance and Failure of Glass Fiber Reinforced Methacrylate-based Ultraviolet Cured-in-Place Pipe Materials. Materials Reports, 2024, 38(12): 22060190-7.
1 Zhang X J, Fang H Y, Hu Q F, et al. Tunnelling and Underground Space Technology, 2022, 120, 104266. 2 Xiang W G, Ma B S, Zhao Y H. China Water & Wastewater, 2020, 36(20), 1(in Chinese). 向维刚, 马保松, 赵雅宏. 中国给水排水, 2020, 36(20), 1. 3 Liao B Y. Study on UV-CIPP repair technology of drainage pipeline. Ph. D. Thesis, China University of Geosciences, China, 2018 (in Chinese). 廖宝勇. 排水管道UV-CIPP非开挖修复技术研究. 博士学位论文, 中国地质大学, 2018. 4 ASTM International. Standard Practice for rehabilitation of existing pipelines and conduits by pulled-in-place installation of cured-in-place thermosetting resin pipe (CIPP), ASTM F 1743-17. West Conshohocken, PA:ASTM International, 2017, pp. 1. 5 China Association for Construction Standardization. Specification for water and drainage pipeline rehabilitation using cured-in-place-pipe method:T/CECS 559-2018. Beijing:China Planning Press, 2018, pp.20(in Chinese). 中国工程建设标准化协会. 给排水管道原位固化法修复工程技术规程:T/CECS 559-2018. 北京:中国计划出版社, 2018, pp. 20. 6 Zhao Y H, Zeng Z, Ma B S. Special Structures, 2019, 36(1), 108(in Chinese). 赵雅宏, 曾正, 马保松. 特种结构, 2019, 36(1), 108. 7 Brown M J P, Moore I D, Fam A. Tunnelling and Underground Space Technology, 2014, 42, 87. 8 Shou K J, Chen B C. Tunnelling and Underground Space Technology, 2018, 71, 544. 9 Fang H Y, Yang K J, Li B, et al. Mathematical Problems in Enginee-ring, 2020, 2020, 1. 10 Yang K J, Xue B H, Fang H Y, et al. Structures, 2021, 29, 484. 11 Yang K J, Fang H Y, Bu J L, et al. Tunnelling and Underground Space Technology, 2021, 117, 104153. 12 Hsu J, Shou K. Tunnelling and Underground Space Technology, 2022, 125, 104520. 13 Alam S, Sterling R L, Allouche E, et al. Tunnelling and Underground Space Technology, 2015, 50, 451. 14 Ji H, Yoo S, Kim J, et al. Water, 2018, 10(8), 983. 15 Ji H W, Koo D D, Kang J. International Journal of Environmental Research and Public Health, 2020, 17(6), 2073. 16 Hodul J, Majerova J, Drochytka R, et al. Materials, 2020, 13(14), 3051. 17 Nuruddin M, Decocker K, Sendesi S M T, et al. Journal of Composite Materials, 2020, 54(23), 3365. 18 Al-zain A O, Marghalani H Y. Operative Dentistry, 2020, 45(3), 297. 19 Al-zain A O, Platt J A. Dental Materials Journal, 2021, 40(1), 202. 20 Zhu P. Research on UV-curing resin toughening and composite molding process. Master's Thesis, National University of Defense Technology, China, 2016 (in Chinese). 朱璞. 紫外光固化树脂增韧及其复合材料光固化成型研究. 硕士学位论文, 国防科学技术大学, 2016. 21 Dong J W, Luo S L, Ning S P, et al. ACS Applied Materials & Interfaces, 2021, 13(50), 60478. 22 Mortell D J, Tanner D A, Mccarthy C T. Composite Structures, 2016, 149, 33. 23 Wen L W, Yu K, Feng Q Q, et al. Materials Reports, 2020, 34(22), 22162(in Chinese). 文立伟, 余坤, 封桥桥, 等. 材料导报, 2020, 34(22), 22162. 24 Li X B, Jiang G M, Wang Q, et al. The Chinese Journal of Nonferrous Metals, 2021, 31 (8), 2125(in Chinese). 李小兵, 蒋国民, 王强, 等. 中国有色金属学报, 2021, 31(8), 2125. 25 Deng Y F, Cai X F, Li X, et al. Acta Materiae Compositae Sinica, 2021, 38(9), 2862(in Chinese). 邓云飞, 蔡雄峰, 李想, 等. 复合材料学报. 2021, 38(9), 2862. 26 Hu C, Sang L, Jiang K, et al. Composite Structures, 2022, 281, 115036. 27 ASTM International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM-790-2017. West Conshohocken, PA:ASTM International, 2017, pp.1. 28 Wu J L, Xiang X L, Huang Y F, et al. Journal of Chongqing University of Technology (Natural Science), 2023, 37(6), 161(in Chinese). 吴进良, 向兴隆, 黄一凡, 等. 重庆理工大学学报(自然科学), 2023, 37(6), 161. 29 Fan W, Dang W, Liu T, et al. Materials & Design, 2019, 183, 108112. 30 Harizi W, Chaki S, Bourse G, et al. Composite Structures, 2022, 289, 115470. 31 Spencer R, Alwekar S, Jo E, et al. Composites Part B:Engineering, 2022, 234, 109713. 32 Feng P, Wu Y W, Liu T Q. Composites Part B:Engineering, 2022, 231, 109543.