Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22060190-7    https://doi.org/10.11896/cldb.22060190
  高分子与聚合物基复合材料 |
玻纤增强甲基丙烯酸酯基UV-CIPP材料抗弯性能及失效分析
夏洋洋1,2,3, 方宏远1,2,3, 张超1,2,3,*, 王翠霞1,2,3, 石明生1,2,3
1 郑州大学水利与交通学院/黄河实验室,郑州 450001
2 重大基础设施检测修复技术国家地方联合工程实验室,郑州 450001
3 地下工程灾变防控省部共建协同创新中心,郑州 450001
Analysis of Flexural Performance and Failure of Glass Fiber Reinforced Methacrylate-based Ultraviolet Cured-in-Place Pipe Materials
XIA Yangyang1,2,3, FANG Hongyuan1,2,3, ZHANG Chao1,2,3,*, WANG Cuixia1,2,3, SHI Mingsheng1,2,3
1 School of Water Conservancy and Transportation/Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China
2 National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou 450001, China
3 Collaborative Innovation Center for Disaster Prevention and Control of Underground Engineering Jointly Built by Provinces and Ministries, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 19328KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 管道修复用紫外光原位固化(Ultraviolet cured-in-place pipe,UV-CIPP)材料是一种玻纤复合材料,其抗弯性能是评价管道修复效果以及材料优化设计所需的重要参考指标。以玻纤增强甲基丙烯酸酯基UV-CIPP材料为研究对象,考虑固化时间、固化距离、紫外灯功率和材料厚度的影响,基于融合高清视频和SEM观测的三点弯曲试验,对玻纤增强甲基丙烯酸酯基UV-CIPP材料抗弯性能和失效机制进行了研究。结果表明,UV-CIPP材料的失效过程可以分为三个阶段:弹性阶段、基体开裂阶段和玻纤布断裂阶段,基体开裂、脱粘分层和纤维拉拔断裂是玻纤增强甲基丙烯酸酯基UV-CIPP材料弯曲失效的主要原因。在单一变量影响下,玻纤增强甲基丙烯酸酯基UV-CIPP材料弯曲强度和弯曲模量随固化时间、固化距离和紫外灯功率的增大均呈现出先增大后减小的趋势,随着材料厚度的增大却逐渐减小。本研究不仅为UV-CIPP材料的优化设计提供了参考依据,也为国产化UV-CIPP材料的发展奠定了重要基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏洋洋
方宏远
张超
王翠霞
石明生
关键词:  紫外光原位固化(UV-CIPP)材料  三点弯曲试验  高清视频  SEM  固化参数  材料厚度    
Abstract: Ultraviolet curable in-place pipe (UV-CIPP) is a glass fiber composite material. Its flexural performance is an important reference index necessary to evaluate the effectiveness of pipeline rehabilitation and material optimization design. The flexural performance and failure mechanism of glass fiber-reinforced methacrylate-based UV-CIPP materials were investigated based on a three-point bending test that incorporated HD video and SEM observations, and accounted for the effects of curing time, curing distance, UV lamp power, and material thickness. Failure of glass fiber-reinforced methacrylate-based UV-CIPP materials was divided into three stages:elastic deformation, matrix cracking, and glass fiber fracture. Matrix cracking, debonding delamination, and fiber pull-out fracture caused bending failures in this material. Under the influence of a single variable, the flexural strength and flexural modulus of UV-CIPP materials firstly increased and then decreased with additional curing time, curing distance, and UV lamp power, but gradually decreased with increased material thickness. This study provides a reference basis for optimal UV-CIPP material design while laying an important foundation to develop of domestic UV-CIPP materials.
Key words:  ultraviolet cured-in-place pipe materials    three-point bending test    HD video    SEM    curing parameters    material thickness
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TU599  
基金资助: 国家自然科学基金(52178368;51909242;52009125);河南省高效科技创新团队和人才培养计划(23IRTSTHN004;23HASTIT007);中国博士后基金(2021T140619;2021M692939);河南省自然科学基金重点项目(232300421137);河南省博士后科研项目启动资助(202001016);黄河实验室(郑州大学)一流课题(YRL22LT07)
通讯作者:  *张超,郑州大学水利科学与工程学院副教授、硕士/博士研究生导师。2008年西北农林科技大学土木工程专业本科毕业,2011年西北农林科技大学结构工程专业硕士毕业,2018年德国魏玛包豪斯大学结构工程博士毕业,2019年到郑州大学工作至今。目前主要从事工程修复材料的多尺度物理力学性能与提升和先进结构材料的设计与应用等方面的研究工作。发表论文40余篇,包括Construction and Building Materials、Engineering Geology、Nanoscale、International Journal of Fatigue、《岩土力学》等,申请和授权专利20余项。chao.zhang.zzu@outlook.com   
作者简介:  夏洋洋,2016年7月、2019年7月分别于黄河科技学院和郑州大学获得工学学士学位和硕士学位。现为郑州大学水利科学与工程学院工程安全与防护专业博士研究生,在张超教授的指导下进行研究。目前主要从事城市埋地管道非开挖修复新材料、技术及理论研究。发表论文20余篇,包括Construction and Building Materials、Computers and Geotechnics、《岩土工程学报》《岩土力学》《同济大学学报 (自然科学版)》《中南大学学报 (自然科学版)》《哈尔滨工业大学学报》等,申请专利30余项,其中授权发明专利7项,授权实用新型专利24项。
引用本文:    
夏洋洋, 方宏远, 张超, 王翠霞, 石明生. 玻纤增强甲基丙烯酸酯基UV-CIPP材料抗弯性能及失效分析[J]. 材料导报, 2024, 38(12): 22060190-7.
XIA Yangyang, FANG Hongyuan, ZHANG Chao, WANG Cuixia, SHI Mingsheng. Analysis of Flexural Performance and Failure of Glass Fiber Reinforced Methacrylate-based Ultraviolet Cured-in-Place Pipe Materials. Materials Reports, 2024, 38(12): 22060190-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060190  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22060190
1 Zhang X J, Fang H Y, Hu Q F, et al. Tunnelling and Underground Space Technology, 2022, 120, 104266.
2 Xiang W G, Ma B S, Zhao Y H. China Water & Wastewater, 2020, 36(20), 1(in Chinese).
向维刚, 马保松, 赵雅宏. 中国给水排水, 2020, 36(20), 1.
3 Liao B Y. Study on UV-CIPP repair technology of drainage pipeline. Ph. D. Thesis, China University of Geosciences, China, 2018 (in Chinese).
廖宝勇. 排水管道UV-CIPP非开挖修复技术研究. 博士学位论文, 中国地质大学, 2018.
4 ASTM International. Standard Practice for rehabilitation of existing pipelines and conduits by pulled-in-place installation of cured-in-place thermosetting resin pipe (CIPP), ASTM F 1743-17. West Conshohocken, PA:ASTM International, 2017, pp. 1.
5 China Association for Construction Standardization. Specification for water and drainage pipeline rehabilitation using cured-in-place-pipe method:T/CECS 559-2018. Beijing:China Planning Press, 2018, pp.20(in Chinese).
中国工程建设标准化协会. 给排水管道原位固化法修复工程技术规程:T/CECS 559-2018. 北京:中国计划出版社, 2018, pp. 20.
6 Zhao Y H, Zeng Z, Ma B S. Special Structures, 2019, 36(1), 108(in Chinese).
赵雅宏, 曾正, 马保松. 特种结构, 2019, 36(1), 108.
7 Brown M J P, Moore I D, Fam A. Tunnelling and Underground Space Technology, 2014, 42, 87.
8 Shou K J, Chen B C. Tunnelling and Underground Space Technology, 2018, 71, 544.
9 Fang H Y, Yang K J, Li B, et al. Mathematical Problems in Enginee-ring, 2020, 2020, 1.
10 Yang K J, Xue B H, Fang H Y, et al. Structures, 2021, 29, 484.
11 Yang K J, Fang H Y, Bu J L, et al. Tunnelling and Underground Space Technology, 2021, 117, 104153.
12 Hsu J, Shou K. Tunnelling and Underground Space Technology, 2022, 125, 104520.
13 Alam S, Sterling R L, Allouche E, et al. Tunnelling and Underground Space Technology, 2015, 50, 451.
14 Ji H, Yoo S, Kim J, et al. Water, 2018, 10(8), 983.
15 Ji H W, Koo D D, Kang J. International Journal of Environmental Research and Public Health, 2020, 17(6), 2073.
16 Hodul J, Majerova J, Drochytka R, et al. Materials, 2020, 13(14), 3051.
17 Nuruddin M, Decocker K, Sendesi S M T, et al. Journal of Composite Materials, 2020, 54(23), 3365.
18 Al-zain A O, Marghalani H Y. Operative Dentistry, 2020, 45(3), 297.
19 Al-zain A O, Platt J A. Dental Materials Journal, 2021, 40(1), 202.
20 Zhu P. Research on UV-curing resin toughening and composite molding process. Master's Thesis, National University of Defense Technology, China, 2016 (in Chinese).
朱璞. 紫外光固化树脂增韧及其复合材料光固化成型研究. 硕士学位论文, 国防科学技术大学, 2016.
21 Dong J W, Luo S L, Ning S P, et al. ACS Applied Materials & Interfaces, 2021, 13(50), 60478.
22 Mortell D J, Tanner D A, Mccarthy C T. Composite Structures, 2016, 149, 33.
23 Wen L W, Yu K, Feng Q Q, et al. Materials Reports, 2020, 34(22), 22162(in Chinese).
文立伟, 余坤, 封桥桥, 等. 材料导报, 2020, 34(22), 22162.
24 Li X B, Jiang G M, Wang Q, et al. The Chinese Journal of Nonferrous Metals, 2021, 31 (8), 2125(in Chinese).
李小兵, 蒋国民, 王强, 等. 中国有色金属学报, 2021, 31(8), 2125.
25 Deng Y F, Cai X F, Li X, et al. Acta Materiae Compositae Sinica, 2021, 38(9), 2862(in Chinese).
邓云飞, 蔡雄峰, 李想, 等. 复合材料学报. 2021, 38(9), 2862.
26 Hu C, Sang L, Jiang K, et al. Composite Structures, 2022, 281, 115036.
27 ASTM International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM-790-2017. West Conshohocken, PA:ASTM International, 2017, pp.1.
28 Wu J L, Xiang X L, Huang Y F, et al. Journal of Chongqing University of Technology (Natural Science), 2023, 37(6), 161(in Chinese).
吴进良, 向兴隆, 黄一凡, 等. 重庆理工大学学报(自然科学), 2023, 37(6), 161.
29 Fan W, Dang W, Liu T, et al. Materials & Design, 2019, 183, 108112.
30 Harizi W, Chaki S, Bourse G, et al. Composite Structures, 2022, 289, 115470.
31 Spencer R, Alwekar S, Jo E, et al. Composites Part B:Engineering, 2022, 234, 109713.
32 Feng P, Wu Y W, Liu T Q. Composites Part B:Engineering, 2022, 231, 109543.
[1] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[2] 张忠科, 刘旭峰, 李昭, 雄健强. P92钢等离子弧焊接接头原位拉伸的SEM观察研究[J]. 材料导报, 2021, 35(24): 24128-24133.
[3] 朱红光, 霍青杰, 倪亚东, 许校男, 杭泽涛, 王涛, 杨赛. 煤矸石细集料-矿渣混凝土抗压强度与抗冻性能研究[J]. 材料导报, 2021, 35(22): 22085-22091.
[4] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[5] 张玉波, 郭荣鑫, 夏海廷, 颜峰, 王时越, 李一博. 颗粒和微观结构对Cu/WCp复合材料疲劳裂纹萌生和扩展行为的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 85-91.
[6] 程强, 何晓聪, 邢保英, 张越. 铝锂合金T型自冲铆接头疲劳特性及失效机理*[J]. 《材料导报》期刊社, 2017, 31(12): 84-88.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed