Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22040361-5    https://doi.org/10.11896/cldb.22040361
  宇航材料 |
高强高模聚酰亚胺纤维的空间环境适应性研究及在航天领域的应用前景分析
杨传超1, 徐鸿杰1, 田国峰1,*, 张静静2, 高鸿2,*, 卓航3, 张梦颖4, 战佳宇4, 武德珍1
1 北京化工大学碳纤维及功能高分子教育部重点实验室,北京 100029
2 中国空间技术研究院,北京 100094
3 中国运载火箭技术研究院,北京 100076
4 江苏先诺新材料科技有限公司,江苏 常州 213149
Research on Space Environment Adaptability of Polyimide Fiber with High-strength and High-modulus and Analysis of Its Application Prospects in Aerospace Field
YANG Chuanchao1, XU Hongjie1, TIAN Guofeng1,*, ZHANG Jingjing2, GAO Hong2,*, ZHUO Hang3, ZHANG Mengying4, ZHAN Jiayu4, WU Dezhen1
1 Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
2 China Academy of Space Technology, Beijing 100094, China
3 China Academy of Launch Vehicle Technology, Beijing 100076, China
4 Jiangsu Shino New Materials & Technology Co., Ltd., Changzhou 213149, Jiangsu, China
下载:  全 文 ( PDF ) ( 2421KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高强高模聚酰亚胺(PI)纤维是近年来出现的一种新型高性能有机纤维,具有优异的力学性能、耐高低温性能、低介电、高绝缘、高阻燃、耐辐照等综合性能,在航天、航空、安全防护、核工业等领域具有广阔的应用前景。本工作着重针对高强高模PI纤维在航天领域中的应用需求,特别是在空间环境中的应用特点,分析了其在极端温度、交变温度、粒子辐照、高真空以及长期负载等环境下的性能表现,初步考核了其空间环境适应性,以期为其相关应用提供设计依据。研究结果显示,高强高模PI纤维表现出优异的力学性能、耐高低温、耐粒子辐照、抗蠕变等综合性能,在350 ℃条件下其拉伸强度和拉伸模量仍分别可达到1.55 GPa和27.74 GPa,经1.0×108 rad(Si)剂量粒子辐照后,拉伸性能保持率高于98%。此外,本工作还结合PI纤维的综合性能表现对其在航天领域的应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨传超
徐鸿杰
田国峰
张静静
高鸿
卓航
张梦颖
战佳宇
武德珍
关键词:  聚酰亚胺纤维  空间环境  适应性  航天应用    
Abstract: Polyimide (PI) fiber with high-strength and high-modulus is a new type of high-performance organic fiber that has emerged in recent years.It has excellent mechanical properties, high and low temperature resistance, low dielectric, high insulation, high flame retardant, radiation resistance and other comprehensive properties, which makes it show broad application prospects in aerospace, aviation, safety protection, nuc-lear industry and other fields.Focusing on the application requirements of PI fiber with high-strength and high-modulus in the aerospace field, especially the application characteristics in the space environment, this work analyzes its performance in extreme temperature, alternating temperature, particle irradiation, high vacuum and long-term load environment.The adaptability of its space environment is preliminarily assessed in order to provide a design basis for related applications.The research results show that the PI fibers with high-strength and high-modulus exhibit excellent mechanical properties, high and low temperature resistance, particle irradiation resistance, and creep resistance.The tensile strength and tensile modulus can still reach 1.55 GPa and 27.74 GPa at 350 ℃, and the retention rate of tensile properties is higher than 98% after 1.0×108 rad (Si) dose particle irradiation.In addition, combined with the comprehensive performance of PI fibers, the application prospect of PI fibers in the aerospace field is prospected.
Key words:  polyimide fiber    space environment    adaptability    aerospace application
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TB332  
基金资助: 国防基础科研计划(JCKY2020110B002)
通讯作者:  * tiangf@mail.buct.edu.cn; gaohong@sina.com   
作者简介:  杨传超,2019年7月于山东科技大学获工学学士学位。现为北京化工大学材料科学与工程学院硕士研究生。在田国峰教授的指导下,主要从事高强高模PI纤维蠕变行为的研究。
高鸿,于2008年毕业于吉林大学(长春),获得高分子化学与物理专业博士学位,2008年作为访问学者就职于日本东京工业大学。现为中国空间技术研究院研究员。主要研究方向为航天器材料选用与应用验证、可靠性测试评价技术。编写专著2部,发表论文50余篇,获授权专利6项。
田国峰,于2011年毕业于北京化工大学,获得材料科学与工程专业博士学位。现为北京化工大学先进技术与装备研究院教授、硕士研究生导师。主要从事高性能聚酰亚胺纤维应用研究、高性能及功能化聚酰亚胺薄膜制备与性能研究、特种树脂设计合成与改性等方面的研究工作。以第一作者和通讯作者发表SCI收录论文25篇,包括Polymers、European Polymer Journal、Polymer、Applied Physics Letters等。
引用本文:    
杨传超, 徐鸿杰, 田国峰, 张静静, 高鸿, 卓航, 张梦颖, 战佳宇, 武德珍. 高强高模聚酰亚胺纤维的空间环境适应性研究及在航天领域的应用前景分析[J]. 材料导报, 2022, 36(22): 22040361-5.
YANG Chuanchao, XU Hongjie, TIAN Guofeng, ZHANG Jingjing, GAO Hong, ZHUO Hang, ZHANG Mengying, ZHAN Jiayu, WU Dezhen. Research on Space Environment Adaptability of Polyimide Fiber with High-strength and High-modulus and Analysis of Its Application Prospects in Aerospace Field. Materials Reports, 2022, 36(22): 22040361-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040361  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22040361
1 Liaw D J, Wang K L, Huang Y C, et al. Progress in Polymer Science, 2012, 37(7), 907.
2 Chang J J, Niu H Q, Wu D Z.Chinese Polymer Bulletin, 2017(3), 19(in Chinese).
常晶菁, 牛鸿庆, 武德珍.高分子通报, 2017(3), 19.
3 Wu D Z, Qi S L.High performance polyimide fibers and its application, Science Press, China, 2020, pp.5(in Chinese).
武德珍, 齐胜利. 高性能聚酰亚胺纤维及应用, 科学出版社, 2020,pp.5.
4 Zhang M Y, Niu H Q, Wu D Z.Macromolecular Rapid Communications, 2018, 39(20), 1800141.
5 Gan F, Dong J, Tang M J, et al. Reactive & Functional Polymers, 2019, 141, 112.
6 Niu H Q, Zhang M Y, Zhou K D, et al. Industrial Technology Innovation, 2014, 1(1), 43(in Chinese).
牛鸿庆, 张梦颖, 周康迪,等.工业技术创新, 2014, 1(1), 43.
7 Zhang M Y, Niu H Q, Han E L, et al. Insulating Materials, 2016, 49(8), 12(in Chinese).
张梦颖, 牛鸿庆, 韩恩林, 等.绝缘材料, 2016, 49(8), 12.
8 Ju D D, Wang X M, Sun C Y, et al. Equipment Environmental Enginee-ring, 2020, 17(3), 1(in Chinese).
琚丹丹, 王馨敏, 孙承月, 等.装备环境工程, 2020, 17(3), 1.
9 Lin T T, Shao H Q, Jiang J H, et al. Composites Science and Enginee-ring, 2021, 48(8), 44(in Chinese).
林婷婷,邵慧奇,蒋金华,等.复合材料科学与工程,2021,48(8),44.
10 Chen J, Ding N W, Li Z F, et al. Progress in Aerospace Sciences, 2016, 83, 37.
11 Minton T K., Roussel J F.ACS Applied Materials & Interfaces, 2010, 2(10), 2687.
12 Feng W Q.Spacecraft Environment Engineering, 2010, 27(2), 139(in Chinese).
冯伟泉.航天器环境工程, 2010, 27(2), 139.
13 Zhou Y, Gao H, Zhang M Y, et al. China Synthetic Fiber Industry, 2019, 42(4), 6(in Chinese).
周映, 高鸿, 张梦颖, 等.合成纤维工业, 2019, 42(4), 6.
14 Chen L.Study on comprehensive performance of several high-performance fibers.Master's Thesis, Beijing University of Chemical Technology, China, 2016(in Chinese).
陈莲.几种高性能纤维的综合性能研究.硕士学位论文, 北京化工大学, 2016.
15 Li H P, Zhao H Y, Yin Y X, et al. Aerospace Materials & Technology, 2021, 51(5), 99(in Chinese).
李皓鹏, 赵贺一, 殷永霞, 等.宇航材料工艺, 2021, 51(5), 99.
16 Sui R, Jiang W, Zhang W B.Aerospace Materials & Technology, 2021, 51(6), 98(in Chinese).
隋蓉, 蒋伟, 张文博.宇航材料工艺, 2021, 51(6), 98.
17 Chen K, Gan Y, Ji H, et al. Technical Textiles, 2019, 37(2), 31(in Chinese).
陈康, 甘宇, 姬洪, 等.产业用纺织品, 2019, 37(2), 31.
18 Lu C C.China Textile Leader, 2012, 31(7), 115(in Chinese).
芦长椿.纺织导报, 2012, 31(7), 115.
19 Ding X, Sun Y, Luo M, et al. Journal of Textile Research, 2021, 42(12), 180(in Chinese).
丁许, 孙颖, 罗敏, 等.纺织学报, 2021, 42(12), 180.
20 Yang J.In:Proceedings of 2021 National Conference on Antennas.Ningbo, Zhejiang, China, 2021, pp.2058(in Chinese).
杨晶.2021年全国天线年会论文集,中国浙江宁波,2021, pp.2058.
21 He Y M, Jiao Y N, Zhou Q, et al. Acta Materiae Compositae Sinica, 2021, 38(5), 1331(in Chinese).
何业茂, 焦亚男, 周庆, 等.复合材料学报, 2021, 38(5), 1331.
22 Xu W J, Wang L W, Tang M Z, et al. Spacecraft Engineering, 2021, 30(2), 54(in Chinese).
许望晶, 王立武, 唐明章, 等.航天器工程, 2021, 30(2), 54.
23 Shen Z C, Ouyang X P, Gao H.Aerospace Materials & Technology, 2021,51(5), 1(in Chinese).
沈自才, 欧阳晓平, 高鸿.宇航材料工艺, 2021, 51(5), 1.
24 Gao H, Shen Z C, He D P, et al. Aerospace Materials & Technology, 2021, 51(5), 15(in Chinese).
高鸿, 沈自才, 何端鹏, 等.宇航材料工艺, 2021, 51(5), 15.
25 Liu P B, Zhang H Z, Xu T, et al. Space Electronic Technology, 2022, 19(1), 89(in Chinese).
刘朋博, 张华振, 徐婷, 等.空间电子技术, 2022, 19(1), 89.
26 He D X.Hi-Tech Fiber and Application, 2006(2), 9(in Chinese).
何东晓.高科技纤维与应用, 2006(2), 9.
27 Lin S, Niu H Q, Li W B.Materials Science and Technology, 2018, 26(6), 23(in Chinese).
林松, 牛鸿庆, 李文斌.材料科学与工艺, 2018, 26(6), 23.
28 Zhou H F, Tian G F, Wu D Z.Optical Fiber & Electric Cable and Their Applications, 2021(5), 6(in Chinese).
周海峰, 田国峰, 武德珍.光纤与电缆及其应用技术, 2021(5), 6.
29 Guo M W, Sun Y, Wang K, et al. Acta Materiae Compositae Sinica.DOI: 10.13801/j.cnki.fhclxb.20211027.002(in Chinese).
郭梦惟, 孙颖, 王昆, 等.复合材料学报.DOI: 10.13801/j.cnki.fhclxb.20211027.002.
[1] 沈自才, 高鸿, 樊艳艳, 闫继娜, 于云, 刘学超, 王胭脂, 代巍. 航天材料飞行试验进展及发展方向[J]. 材料导报, 2022, 36(22): 22050022-8.
[2] 季启政, 王一凡, 胡小锋, 李兴冀, 杨剑群, 刘尚合. 航天用氮化镓材料的研究进展[J]. 材料导报, 2022, 36(22): 22050023-6.
[3] 孙承月, 郭鑫鑫, 吴忧, 曹争利, 王豪, 琚丹丹, 王岩, 吴宜勇. 聚酰亚胺气凝胶材料的电子/紫外辐照效应及机理分析[J]. 材料导报, 2022, 36(22): 22040378-8.
[4] 陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
[5] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed