Research on Space Environment Adaptability of Polyimide Fiber with High-strength and High-modulus and Analysis of Its Application Prospects in Aerospace Field
1 Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China 2 China Academy of Space Technology, Beijing 100094, China 3 China Academy of Launch Vehicle Technology, Beijing 100076, China 4 Jiangsu Shino New Materials & Technology Co., Ltd., Changzhou 213149, Jiangsu, China
Abstract: Polyimide (PI) fiber with high-strength and high-modulus is a new type of high-performance organic fiber that has emerged in recent years.It has excellent mechanical properties, high and low temperature resistance, low dielectric, high insulation, high flame retardant, radiation resistance and other comprehensive properties, which makes it show broad application prospects in aerospace, aviation, safety protection, nuc-lear industry and other fields.Focusing on the application requirements of PI fiber with high-strength and high-modulus in the aerospace field, especially the application characteristics in the space environment, this work analyzes its performance in extreme temperature, alternating temperature, particle irradiation, high vacuum and long-term load environment.The adaptability of its space environment is preliminarily assessed in order to provide a design basis for related applications.The research results show that the PI fibers with high-strength and high-modulus exhibit excellent mechanical properties, high and low temperature resistance, particle irradiation resistance, and creep resistance.The tensile strength and tensile modulus can still reach 1.55 GPa and 27.74 GPa at 350 ℃, and the retention rate of tensile properties is higher than 98% after 1.0×108 rad (Si) dose particle irradiation.In addition, combined with the comprehensive performance of PI fibers, the application prospect of PI fibers in the aerospace field is prospected.
1 Liaw D J, Wang K L, Huang Y C, et al. Progress in Polymer Science, 2012, 37(7), 907. 2 Chang J J, Niu H Q, Wu D Z.Chinese Polymer Bulletin, 2017(3), 19(in Chinese). 常晶菁, 牛鸿庆, 武德珍.高分子通报, 2017(3), 19. 3 Wu D Z, Qi S L.High performance polyimide fibers and its application, Science Press, China, 2020, pp.5(in Chinese). 武德珍, 齐胜利. 高性能聚酰亚胺纤维及应用, 科学出版社, 2020,pp.5. 4 Zhang M Y, Niu H Q, Wu D Z.Macromolecular Rapid Communications, 2018, 39(20), 1800141. 5 Gan F, Dong J, Tang M J, et al. Reactive & Functional Polymers, 2019, 141, 112. 6 Niu H Q, Zhang M Y, Zhou K D, et al. Industrial Technology Innovation, 2014, 1(1), 43(in Chinese). 牛鸿庆, 张梦颖, 周康迪,等.工业技术创新, 2014, 1(1), 43. 7 Zhang M Y, Niu H Q, Han E L, et al. Insulating Materials, 2016, 49(8), 12(in Chinese). 张梦颖, 牛鸿庆, 韩恩林, 等.绝缘材料, 2016, 49(8), 12. 8 Ju D D, Wang X M, Sun C Y, et al. Equipment Environmental Enginee-ring, 2020, 17(3), 1(in Chinese). 琚丹丹, 王馨敏, 孙承月, 等.装备环境工程, 2020, 17(3), 1. 9 Lin T T, Shao H Q, Jiang J H, et al. Composites Science and Enginee-ring, 2021, 48(8), 44(in Chinese). 林婷婷,邵慧奇,蒋金华,等.复合材料科学与工程,2021,48(8),44. 10 Chen J, Ding N W, Li Z F, et al. Progress in Aerospace Sciences, 2016, 83, 37. 11 Minton T K., Roussel J F.ACS Applied Materials & Interfaces, 2010, 2(10), 2687. 12 Feng W Q.Spacecraft Environment Engineering, 2010, 27(2), 139(in Chinese). 冯伟泉.航天器环境工程, 2010, 27(2), 139. 13 Zhou Y, Gao H, Zhang M Y, et al. China Synthetic Fiber Industry, 2019, 42(4), 6(in Chinese). 周映, 高鸿, 张梦颖, 等.合成纤维工业, 2019, 42(4), 6. 14 Chen L.Study on comprehensive performance of several high-performance fibers.Master's Thesis, Beijing University of Chemical Technology, China, 2016(in Chinese). 陈莲.几种高性能纤维的综合性能研究.硕士学位论文, 北京化工大学, 2016. 15 Li H P, Zhao H Y, Yin Y X, et al. Aerospace Materials & Technology, 2021, 51(5), 99(in Chinese). 李皓鹏, 赵贺一, 殷永霞, 等.宇航材料工艺, 2021, 51(5), 99. 16 Sui R, Jiang W, Zhang W B.Aerospace Materials & Technology, 2021, 51(6), 98(in Chinese). 隋蓉, 蒋伟, 张文博.宇航材料工艺, 2021, 51(6), 98. 17 Chen K, Gan Y, Ji H, et al. Technical Textiles, 2019, 37(2), 31(in Chinese). 陈康, 甘宇, 姬洪, 等.产业用纺织品, 2019, 37(2), 31. 18 Lu C C.China Textile Leader, 2012, 31(7), 115(in Chinese). 芦长椿.纺织导报, 2012, 31(7), 115. 19 Ding X, Sun Y, Luo M, et al. Journal of Textile Research, 2021, 42(12), 180(in Chinese). 丁许, 孙颖, 罗敏, 等.纺织学报, 2021, 42(12), 180. 20 Yang J.In:Proceedings of 2021 National Conference on Antennas.Ningbo, Zhejiang, China, 2021, pp.2058(in Chinese). 杨晶.2021年全国天线年会论文集,中国浙江宁波,2021, pp.2058. 21 He Y M, Jiao Y N, Zhou Q, et al. Acta Materiae Compositae Sinica, 2021, 38(5), 1331(in Chinese). 何业茂, 焦亚男, 周庆, 等.复合材料学报, 2021, 38(5), 1331. 22 Xu W J, Wang L W, Tang M Z, et al. Spacecraft Engineering, 2021, 30(2), 54(in Chinese). 许望晶, 王立武, 唐明章, 等.航天器工程, 2021, 30(2), 54. 23 Shen Z C, Ouyang X P, Gao H.Aerospace Materials & Technology, 2021,51(5), 1(in Chinese). 沈自才, 欧阳晓平, 高鸿.宇航材料工艺, 2021, 51(5), 1. 24 Gao H, Shen Z C, He D P, et al. Aerospace Materials & Technology, 2021, 51(5), 15(in Chinese). 高鸿, 沈自才, 何端鹏, 等.宇航材料工艺, 2021, 51(5), 15. 25 Liu P B, Zhang H Z, Xu T, et al. Space Electronic Technology, 2022, 19(1), 89(in Chinese). 刘朋博, 张华振, 徐婷, 等.空间电子技术, 2022, 19(1), 89. 26 He D X.Hi-Tech Fiber and Application, 2006(2), 9(in Chinese). 何东晓.高科技纤维与应用, 2006(2), 9. 27 Lin S, Niu H Q, Li W B.Materials Science and Technology, 2018, 26(6), 23(in Chinese). 林松, 牛鸿庆, 李文斌.材料科学与工艺, 2018, 26(6), 23. 28 Zhou H F, Tian G F, Wu D Z.Optical Fiber & Electric Cable and Their Applications, 2021(5), 6(in Chinese). 周海峰, 田国峰, 武德珍.光纤与电缆及其应用技术, 2021(5), 6. 29 Guo M W, Sun Y, Wang K, et al. Acta Materiae Compositae Sinica.DOI: 10.13801/j.cnki.fhclxb.20211027.002(in Chinese). 郭梦惟, 孙颖, 王昆, 等.复合材料学报.DOI: 10.13801/j.cnki.fhclxb.20211027.002.