Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22010070-7    https://doi.org/10.11896/cldb.22010070
  无机非金属及其复合材料 |
压电材料在传统吸声结构中的应用
陈檬迪1,2, 王妮1,2,*, 肖红3,*
1 东华大学纺织学院,上海 201620
2 东华大学纺织面料技术教育部重点实验室,上海 201620
3 军事科学院系统工程研究院,北京 100010
Application of Piezoelectric Materials in Traditional Sound Absorption Structures
CHEN Mengdi1,2, WANG Ni1,2,*, XIAO Hong3,*
1 College of Textiles, Donghua University, Shanghai 201620, China
2 Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University,Shanghai 201620, China
3 System Engineering Institute, Academy of Military Sciences(AMS), Beijing 100010, China
下载:  全 文 ( PDF ) ( 16149KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压电材料受到外界声压强作用时,可将声能转化为电能,并进一步转化为热能进行消耗,这可以作为一种新的吸声机制。当把压电材料应用到传统吸声结构中时,压电材料特有的吸声机制有利于提高结构的吸声降噪性能。本文总结了国内外压电材料在传统吸声结构中的应用进展。首先,介绍了常用的压电材料和其吸声机制。此外,根据传统多孔吸声结构和共振吸声结构的分类,系统综述了压电-多孔吸声结构(无机压电填料泡沫、有机压电泡沫、有机压电气凝胶等)以及压电-共振吸声结构(压电薄片、压电微穿孔板、压电静电纺薄膜等)的研究进展,并提炼出两种结构的基本设计原则、结构和性能。最后提出了压电复合吸声结构研究领域存在的问题及发展方向,以促进压电材料在传统吸声结构中的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈檬迪
王妮
肖红
关键词:  压电材料  吸声  吸声机制  多孔吸声结构  共振吸声结构    
Abstract: When piezoelectric materials are subjected to external sound pressure, the sound energy can be converted into electrical energy, and further converted into thermal energy for consumption, which can be used as a new sound absorption mechanism. When piezoelectric materials are applied to the traditional sound absorbing structure, the special sound absorbing mechanism of piezoelectric material is beneficial to improve the sound absorbing and noise reduction performance of the structure. The application of piezoelectric materials in traditional sound absorption structures is summarized in this paper. Firstly, common piezoelectric materials and their sound absorption mechanism are introduced. In addition, according to the classification of traditional porous and resonant sound absorption structure, the research progress of piezoelectric-porous sound absorption structure (inorganic piezoelectric filler foam, PVDF foam, organic piezoelectric gel, etc.) and piezoelectric-resonant sound absorption structure (piezoelectric thin slice, piezoelectric micro-perforated panel, piezoelectric electrostatic spinning film, etc.) is systematically reviewed. And the basic design principle, structure and performance of the two structures are also extracted. Finally, in order to promote the application of piezoelectric materials in traditional sound absorbing structures, the existing problems and development direction of piezoelectric composite sound absorbing structures are proposed.
Key words:  piezoelectric material    sound absorption    sound absorption mechanism    porous sound absorption structure    resonant sound absorption structure
发布日期:  2023-12-19
ZTFLH:  TB34  
通讯作者:  *王妮,东华大学纺织科学与工程学科教授,博士研究生导师。主要从事光学功能纤维及纺织品设计与开发。发表学术论文40余篇,其中SCI/EI收录20篇,授权专利5项。获中国纺织工业联合会和上海市科技进步二等奖各1项。
肖红,博士,军事科学院系统工程研究院军需工程技术研究所高级工程师,博士研究生导师。2005年于东华大学获博士学位,2007年中科院化学所博士后,2013年康乃尔大学访问学者。主要从事军用及电磁功能纺织材料、迷彩伪装的基础理论及应用研究。SCI/EI收录40余篇,授权专利20余项,“十三五”国家重点图书专著2本。2020全国科普工作先进工作者。76echo@vip.sina.com;wangni@dhu.edu.cn   
作者简介:  陈檬迪,2019年6月于浙江理工大学获得工学学士学位。现为东华大学纺织学院博士研究生。在肖红老师的指导下进行研究。目前主要研究领域为吸声纺织品。
引用本文:    
陈檬迪, 王妮, 肖红. 压电材料在传统吸声结构中的应用[J]. 材料导报, 2023, 37(24): 22010070-7.
CHEN Mengdi, WANG Ni, XIAO Hong. Application of Piezoelectric Materials in Traditional Sound Absorption Structures. Materials Reports, 2023, 37(24): 22010070-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010070  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22010070
1 Tang Z M. Ecological Economy,2017,33(1),6 (in Chinese).
唐兆民. 生态经济,2017,33(1),6.
2 Rossi A M. Annali dell’Istituto Superiore di Sanita,2011,47(4),480.
3 Sun J X. Environmental Economy,2021(12),8 (in Chinese).
孙剑鑫. 环境经济,2021(12),8.
4 An Z G,Zhang J J,Song G Z. Advanced Materials Industry,2012,225(8),24 (in Chinese).
安振国,张敬杰,宋广智. 新材料产业,2012,225(8),24.
5 Ding L. Audio Engineering,2019,43(6),1 (in Chinese).
丁雷. 电声技术,2019,43(6),1.
6 Nejad M E T,Loghmani A,Ziaei-Rad S. Applied Acoustics,2020,169(2),107458.
7 Wang R Q,Ma L L,Miu X S. Technical Acoustics,1999,18(4),146 (in Chinese).
王仁乾,马黎黎,缪旭弘. 声学技术,1999,18(4),146.
8 Kabir I I,Fu Y,Souza N D,et al. Journal of Materials Science,2020,55(12),5048.
9 Wong Y S,Sekar V,Se Yong E N,et al. MATEC Web of Conferences,2021,335,03016.
10 Noh H M. Advances in Mechanical Engineering,2018,10(7),1687.
11 Fang L H,Hassan S I S,Rahim R A,et al. Energy Procedia,2017,105,836.
12 Chaithanya D J,Anitha S,Ramya B,et al. Journal of Physics:Conference Series,2021,1916(1),012003.
13 Wang S,Zhang T,Li K W,et al. Advanced Electronic Materials,2017,3(3),1600449.
14 Shao H,Wang H X,Cao Y Y,et al. Advanced Electronic Materials,2021,7(6),2100206.
15 Zhao C M,Hake A,Sung W K,et al. The Journal of the Acoustical Society of America,2018,143(3),1804.
16 Sheng J,Qiao Y L,Zhang W Z,et al. Journal of Alloys & Compounds,2020,819,153045.
17 Vuong L D,Gio P D. Journal of Alloys & Compounds,2020,817,152790.
18 Datta A,Mukherjee D,Witanachchi S,et al. Advanced Functional Materials,2014,24(18),2638.
19 Bai S,Zhang J,Chen Z,et al. Ceramics International,2018,44(8),9794.
20 Takahashi H,Numamoto Y,Tani J,et al. Japanese Journal of Applied Physics,2006,45,L30.
21 Li B Y. Preparation and properties of polylactide-based piezoelectric thin films. Master’s Thesis,University of Electronic Science and Technology of China,China,2021 (in Chinese).
李炳牙. 聚乳酸基压电薄膜的制备及其性能研究. 硕士学位论文,电子科技大学,2021.
22 Lee J H,Yoon H J,Kim T Y,et al. Advanced Functional Materials,2015,25(21),3276.
23 Jiang L Q,Xie H A,Hou Y,et al. Ceramics International,2019,45(9),11347.
24 Wang G,Liu T,Sun X,et al. Sensors and Actuators A:Physical,2018,280,319.
25 Bolbasov E N,Stankevich K S,Sudarev E A,et al. Materials Chemistry and Physics,2016,182,338.
26 Cai J,Hu N,Wu L K,et al. Composites Part A:Applied Science and Manufacturing,2019,121,223.
27 Nguyen V,Melkote S,Deshamudre A,et al. Journal of Manufacturing Processes,2016,24(2),328.
28 Vincent B,Rouxel D,Strashilov V,et al. Applied Physics A-Materials Science & Processing,2015,118(4),1469.
29 Kawai H. Japanese Journal of Applied Physics,1969,8(7),975
30 Hu X R,Ding Z T,Fei L X,et al. Journal of Materials Science,2019,54(8),6401.
31 Cox T J,D’antonio P. Acoustics Bulletin,2016,41(6),58.
32 Yang M,Chen S,Fu C,et al. Proceedings of Meetings on Acoustics,2017,32(1),045018.
33 Arenas J P,Crocker M J. Sound and Vibration,2010,44(7),12.
34 Yang M,Sheng P. Annual Review of Materials Research,2017,47(1),83.
35 Kim B-S,Park J H. Composite Structures,2018,183(1),545.
36 Zhao X,Fan X. Applied Acoustics,2015,88,123.
37 Kalinova K A,Ozturk M K B,Komarek M A. Journal of the Textile Institute,2016,107(8),1068.
38 Umeda M,Nakamura K,Ueha S. Japanese Journal of Applied Physics,1996,35Part1(5B),3267.
39 Yang Z. Preparation and Sound Absorption Properties of Multilayer Foam Composites Based on Piezoelectric Effect. Master’s Thesis,Wuhan Institute of Technology,Chian,2018 (in Chinese).
杨振. 基于压电效应的多层发泡复合材料的制备及吸声性能研究. 硕士学位论文,武汉工程大学,2018.
40 Cha S N,Seo J-S,Kim S M,et al. Advanced Materials,2010,22(42),4726.
41 Cheng G X,Shen F,Lu T,et al. Polymer Materials Science and Engineering,1999,15(3),134 (in Chinese).
成国祥,沈锋,卢涛,等. 高分子材料科学与工程,1999,15(3),134.
42 Zhang W Q,Wu X Y,Zhang M. Technical Acoustics,2008,27(4),577 (in Chinese).
张文群,吴新跃,张萌. 声学技术,2008,27(4),577.
43 Mohamed A M,Yao K,Yousry Y M,et al. Applied Physics Letters,2018,113(9),092903.
44 Cai J,Qin C L,Xu F,et al. Piezoelectrics & Acoustooptics,2005,27(3),294 (in Chinese).
蔡俊,秦川丽,徐菲,等. 压电与声光,2005,27(3),294.
45 Zhu F L. Preparation of damping PU/PZT piezoelectric composites and research on properties of sound absorption. Master’s Thesis,Harbin Institute of Technology,Chian,2012 (in Chinese).
朱凤磊. 阻尼PU/PZT压电复合材料的制备及吸声性能研究. 硕士学位论文,哈尔滨工业大学,2012.
46 Wu C M,Chou M H. Express Polymer Letters,2020,14(2),103.
47 Yang D,Wang T,Xiao H,et al. Chinese Journal of Sensors and Actuators,2014,27(4),452 (in Chinese).
杨丹,王涛,肖涵,等. 传感技术学报,2014,27(4),452.
48 Yang Z,Li D H,Wang X,et al. Chinese Journal of Colloid & Polymer,2018,36(1),25 (in Chinese).
杨振,李栋辉,王鑫,等. 胶体与聚合物,2018,36(1),25.
49 Mojtaba R,Christos S E,Kui Y,et al. Applied Physics Letters,2017,111(24),241601.
50 Wang G,Yuan P,Ma B,et al. Macromolecular Materials & Engineering,2020,305(11),1.
51 Zhang X A. The vibration sound absorption theory of flexible materials,Xi’an Jiaotong University Press,China,2010.
52 Jiang X Q,Liu L,Cao J L,et al. China Rubber Industry,2008(7),395 (in Chinese).
蒋小强,刘力,曹建莉. 橡胶工业,2008(7),395.
53 Cai J,Li Y H,Cai W M. Polymer Materials Science and Engineering,2007,23(4),215 (in Chinese).
蔡俊,李亚红,蔡伟民. 高分子材料科学与工程,2007,23(4),215.
54 Cai J,Zhou B X,Cai W M. Acta Materiae Compositae Sinica,2006,23(3),87 (in Chinese).
蔡俊,周保学,蔡伟民. 复合材料学报,2006,23(3),87.
55 Duan X H,Wang H Q,Li Z B,et al. Applied Acoustics,2015,88,84.
56 Wu C M,Chou M H. Composites Science and Technology,2016,127,127.
57 Wu C M,Chou M H. European Polymer Journal,2016,82,35.
58 Hosseini S M,Yousefi A A. Organic Electronics,2017,50,121.
59 He J P,Zhong F C. Journal of Vibration and Shock,2005,24(4),9 (in Chinese).
贺江平,钟发春. 振动与冲击,2005,24(4),9.
60 Zhu C Y,Zhao Z X,Huang Q B,et al. Noise and Vibration Control,2007(3),1 (in Chinese).
朱从云,赵则祥,黄其柏,等. 噪声与振动控制,2007(3),1.
[1] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[2] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[3] 张宇, 郭文龙, 梁李斯, 弥晗, 马洪月, 张自恒, 李林波. 泡沫金属及其复合结构吸声性能优化[J]. 材料导报, 2023, 37(19): 22060014-8.
[4] 马新国, 程正旺, 王妹, 贺晶, 邹维, 邓水全. 适用声波谐振器的磁控溅射制备AlN薄膜优化技术[J]. 材料导报, 2023, 37(11): 21080275-7.
[5] 熊康, 杨啟梁, 胡溧. 低污染汽车聚氨酯泡沫设计与吸声性能研究[J]. 材料导报, 2022, 36(5): 20110059-5.
[6] 于长帅, 罗忠, 骆海涛, 何凤霞. 多孔吸声材料声学模型及其特征参数测试方法研究进展[J]. 材料导报, 2022, 36(4): 20110035-11.
[7] 梁李斯, 郭文龙, 马洪月, 弥晗, 张宇, 米嘉毓, 李林波. 多孔吸声材料的吸声性能预测及吸声模型研究进展[J]. 材料导报, 2022, 36(23): 21030180-8.
[8] 于长帅, 罗忠, 骆海涛, 何凤霞. 分层多孔材料声学建模和吸声性能预测方法研究[J]. 材料导报, 2022, 36(16): 21040182-5.
[9] 李子晗, 赵超, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 20080182-8.
[10] 张庆, 刘呈坤, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁. 压电纳米发电机材料选用和结构设计研究进展[J]. 材料导报, 2021, 35(11): 11066-11076.
[11] 彭敏, 赵晓明. 纤维类吸声材料的研究进展[J]. 材料导报, 2019, 33(21): 3669-3677.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed