Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2206-2213    https://doi.org/10.11896/cldb.18060078
  无机非金属及其复合材料 |
自密实混凝土拌合物稳定性动态监测及数值模拟研究进展
李文旭1,马昆林1,2,龙广成1,2,谢友均1,2,马聪1,2,李宁1
1 中南大学土木工程学院,长沙410075
2 高速铁路建造技术国家工程实验室,长沙410075
Stability Dynamic Monitoring and Simulation of Self-compacting Concrete: a Review
LI Wenxu1, MA Kunlin1,2, LONG Guangcheng1,2, XIE Youjun1,2, MA Cong1,2, LI Ning1
1 School of Civil Engineering, Central South University, Changsha 410075
2 National Engineering Laboratory of High-speed Railway Construction Technology, Changsha 410075
下载:  全 文 ( PDF ) ( 11492KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自密实混凝土(Self-compacting concrete,SCC)在新拌阶段具有优异的施工性能,自问世以来就受到相关研究人员与工程技术人员的广泛关注,并已在建筑、铁路、公路、水利等工程结构中得到了越来越多的应用。为实现“自密实”性能,SCC采用了降低粗骨料体积含量、增加浆体体积含量等技术措施。新拌SCC具有较高的流动性,造成其中各组分在流动过程中的离析倾向增大,极易导致拌合物稳定性的波动。在实际工程中,人们更关注SCC的大流动性而忽略了其稳定性,这有可能造成工程质量问题。
为改善SCC拌合物的稳定性,相关研究者们做出了许多努力,提出了增强新拌SCC稳定性的技术措施,并发展了SCC稳定性测试及评价方法,包括视觉稳定性指数法(VSI法)、硬化混凝土视觉稳定性指数法(HVSI法)、电子图像分析法、GTM筛稳定性试验、离析率筛析试验、贯入试验、柱状法、压实因数法以及离析探针等。这些方法均是在粗骨料沉降完成后对拌合物稳定性的总体评价,忽略了对拌合物中浆体、骨料发生相对运动的动态过程及特性分析,从而不能有效表达SCC拌合物稳定性的本质及关键影响因素。近年来,国内外学者也提出了诸如电导率法、静水压力测试法(HYSPT)、可视浆体法、超声波速法、放射性元素标记法等,可较好地实现对SCC拌合物稳定性的动态监测。同时,结合现代先进的数值计算与模拟技术,也有学者对SCC拌合物稳定性进行了数值模拟分析,通过建模实现SCC拌合物的可视化,已成为SCC拌合物稳定性研究的重要手段,目前主要采取离散元(DEM)、有限元软件(CFD)及二者结合的固-液耦合模型等三种数值模拟方法对SCC拌合物流动过程进行数值模拟与可视化分析,为SCC拌合物稳定性预测和控制提供更直观、便捷的手段。
鉴于此,本文从新拌SCC稳定性着手,较全面地阐述了影响SCC拌合物稳定性的关键因素,总结了国内外对SCC拌合物稳定性的动态监测、评价方法及数值模拟方法,提出了SCC拌合物稳定性的研究建议,展望了其发展趋势,从而为深化SCC理论研究、拓展SCC工程应用提供支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文旭
马昆林
龙广成
谢友均
马聪
李宁
关键词:  自密实混凝土  稳定性  动态监测  数值模拟    
Abstract: Self-compacting concrete (SCC)has superior construction performance in the fresh mixing stage, it has attracted extensive attention of relevant researchers and engineering technicians since its advent, and has gained more and more applications in engineering structures such as construction, railway, highway and water conservancy. In order to achieve "self-compacting" performance, SCC adopted technical measures such as reducing the volume content of coarse aggregate and increasing the volume content of the paste. The characteristics of the high fluidity of fresh SCC and low coarse aggregate volume content made the segregation tendency of each component increase, which easily leads to poor stability of the mixture. In practical engineering applications, people pay more attention to the high fluidity of SCC and neglect the study of stability, which often causes engineering quality problems.
In order to improve the stability of SCC mixture, researchers have made many efforts to propose technical measures to enhance the stability of fresh SCC, and developed a series of SCC stability testing and evaluation methods, including visual stability index (VSI) method, hardened concrete visual stability index (HVSI) method, electronic image analysis method, GTM sieve stability test, segregation rate sieve test, penetration test, column method, compaction factor method, separation probe, which are basically the overall evaluation of the stability of the mixture after the aggregate settlement is completed, ignoring the dynamic process and characteristics of the relative motion of the paste and aggregate in the mixture. The analysis makes it difficult to understand the nature and key influencing factors of SCC mixture stability. In recent years, scholars have also proposed methods such as conductivity method, hydrostatic pressure test (HYSPT), visible slurry method, ultrasonic speed method, radioactive element labeling method, etc., which can better realize the dynamic monitoring of the stabilize SCC mixtures. At the same time, combined with modern advanced numerical calculation and simulation technology, some scholars have carried out numerical simulation analysis on the stability of SCC mixture, and realized the visualization of SCC mixture by modeling, which has become the stability of SCC mixture. The important means of research are the numerical simulation and visual analysis of the flow process of SCC mixture by three numerical simulation methods, such as discrete element (DEM), finite element software (CFD) and a combination of solid-liquid coupling models, which provides a more intuitive and convenient means for SCC mixture stability prediction and control.
In this paper, the key factors affecting the stability of SCC mixture are elaborated from the connotation of the stability of fresh mixed SCC. The dynamic monitoring and evaluation methods and numerical simulation methods for the stability of SCC mixture at home and abroad are summarized, and the research recommendations for the stability of SCC mixture are proposed. Finally, the development trend of the self-compacting concrete is prospected.
Key words:  self-compacting concrete    stability    dynamic monitoring    numerical simulation method
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TQ172  
基金资助: 国家自然科学基金(51678569;51678568);中国铁路总公司科技研究开发计划重点课题(2017G005-B)
作者简介:  李文旭,2016年6月毕业于南昌航空大学,获得工学硕士学位。现为中南大学土木工程学院博士研究生,在龙广成、马昆林教授指导下进行研究。目前主要研究领域为先进水泥基材料。
马昆林,中南大学土木工程学院教授。分别于1999年、2005年和2009年在中南大学获得学士、硕士和博士学位。2015—2016年在University of Kentucky进行访问学者工作。2010年获湖南省优秀博士论文,2012年入选湖南省“121”人才工程,2013年入选中南大学“531”人才计划。主要从事道路与铁道工程方面的教学与科研,近年来主持和参加包括国家自科基金重大项目、高铁联合基金、“973”和“863”项目在内的纵横向科研项目30余项,发表学术论文近70余篇,其中SCI和EI收录30余篇,获省部级以上科研奖励3项,发明专利6项,主编教材2部。
引用本文:    
李文旭, 马昆林, 龙广成, 谢友均, 马聪, 李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
LI Wenxu, MA Kunlin, LONG Guangcheng, XIE Youjun, MA Cong, LI Ning. Stability Dynamic Monitoring and Simulation of Self-compacting Concrete: a Review. Materials Reports, 2019, 33(13): 2206-2213.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060078  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2206
1 Bensebti S E, Aggoun S, Kadri E H, et al. Advanced Materials Research, 2014, 875-877, 68.2 Shen L, Jovein H B, Wang Q. Journal of Materials in Civil Engineering, 2016, 28(1), 04015067.3 Domone P L. Cement Concrete Composites, 2006, 28(2), 197.4 Esmaeilkhanian B, Khayat K H, Yahia A, et al. Cement & Concrete Composites, 2014, 54, 21.5 Shen L, Struble L, Lange D. ACI Materials Journal, 2009, 106(4), 367.6 Pan D Y, Xing J, Wang B Y. Journal of Chongqing University of Techno-logy(Natural Science),2018, 32(1), 86(in Chinese).潘道远, 邢军, 汪步云. 重庆理工大学学报(自然科学), 2018, 32(1), 86.7 Struble L J, Ji X. Handbook of analytical techniques in concrete science & technology, Noyes Publications, USA,2001.8 Fayed M E, Otten L. Handbook of powder science & technology, Springer, US, 1997.9 Li H J,Yi Z L, Xie Y J. Materials Reviews A:Review Papers, 2012, 26(3),120(in Chinese).李化建, 易忠来, 谢永江. 材料导报:综述篇, 2012, 26(3),120.10 G k e H S, Andi-Cakir. Construction and Bulding Materials, 2018, 168 (20), 312.11 Lange D A, Struble L J, Dambrosia M D, et al. Performance and accep-tance of self-consolidating Concrete: final report, Civil Engineering Stu-dies Illionois Center for Transportations, 2008.12 Shen L. Role of aggregate packing in segregation and flow behavior of self-consolidating concrete. Ph. D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2007.13 Chen Yu,Huang Xiangning, Zhou Wenfang. Journal of Changsha University of Science and Technology(Natural Science), 2011, 8(4), 29(in Chinese).陈瑜, 黄湘宁, 周文芳. 长沙理工大学学报(自然科学版), 2011, 8(4), 29 .14 Zhang Yong, Li Huajian, Zhao Qingxin. Concrete,2015(10),113(in Chinese).张勇, 李化建, 赵庆新. 混凝土, 2015(10),113.15 Ding Xiangqun,Zhang Lengqing,Zhou Liren,et al. Concrete,2014(8), 1 (in Chinese).丁向群, 张冷庆, 周莉人,等. 混凝土, 2014(8), 1.16 Zhang Yunguo, Wu Zhimin, Zhang Xiaoyun. Journal of Dalian University of Technology, 2010, 50(2),234 (in Chinese).张云国, 吴智敏, 张小云.大连理工大学学报, 2010, 50(2),234.17 Zhang Yong. Researchonthe static stabiliyt of the filling layer SCC of CRTS Ⅲ type system. Master's Thesis, Yanshan University, China, 2011 (in Chinese).张勇.CRTS Ⅲ型板式无砟轨道充填层自密实混凝土静态稳定性研究.硕士学位论文, 燕山大学, 2016.18 Lange D , Struble L , Shen L . Journal of Testing & Evaluation, 2006, 35(3),100535.19 Khayat K H, Vanhove Y, Pavate T V, et al. ACI Materials Journal, 2007, 104(4), 424.20 Mesbah H A, Yahia A, Khayat K H. Cement & Concrete Research, 2011, 41(5), 451.21 Peng Y, Lauten R A, Reknes K, et al. Cement & Concrete Composites, 2017, 76, 25.22 Peng Y, Jacobsen S. Cement & Concrete Research, 2013, 54, 133.23 Peng Y, Jacobsen S, Weerdt K D, et al. Advances in Civil Engineering Materials, 2014, 3(2), 1.24 Radocea A. A study of the mechanism of plastic shrinkage of cement-based materials. Ph. D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 1992.25 Radocea A. Cement & Concrete Research, 1992, 22(5), 855.26 Boulekbache B, Hamrat M, Chemrouk M, et al. Construction & Building Materials, 2010, 24(9), 1664.27 Tian Zhenghong,Li Xuhang,Peng Zhihai. Journal of Building Materials, 2015, 18(2), 243(in Chinese).田正宏, 李旭航, 彭志海. 建筑材料学报, 2015, 18(2), 243.28 Vangel M G. Technometrics, 2002, 44(3), 242.29 Benaicha M, Jalbaud O, Roguiez X, et al. Alexandria Engineering Journal, 2015, 54(4), 1181.30 Petrou M F, Harries K A, Gadala-Maria F, et al. Cement & Concrete Research, 2000, 30(5), 809.31 Tanigawa Y, Mori H. In: Proceedings of the 29th Japan Congress on Materials Research. Japan, 1986, pp. 129.32 Gram A. Materials & Structures, 2011, 44(4), 805.33 Annika Gram. Numerical modelling of self-compacting concrete flow. Ph.D. Thesis, Royal Institute of Technology (KTH), Sweden, 2009.34 Chu H, Machida A. In: Recent Advances in Concrete Technology, Fourth CANMET/ACI/ JCI International Conference. Tokushima, Japan,1998.35 Petersson O, Hakami H. In: 2nd International SCC Conference. Tokyo, Japan, 2001.36 Petersson O. In: Proceedings, 3rd International RILEM Symposium. Reykjavik, 2003, pp. 202.37 Wang Fujun. Computational fluid dynamics analysis CFD principle and application, Beijing University Press, China, 2004 (in Chinese)王福军. 计算机流体动力分析CFD软件原理与应用,北京大学出版社, 200438 Che Defu,Li Huixiong. Multiphase flow and its application, Xi'an Jiaotong University Press, China, 2004.车得福, 李会雄. 多相流及其应用, 西安交通大学出版社, 2007.39 Ferrara L, Cremonesi M, Tregger N, et al. Cement and Concrete Research, 2012, 42(8),1134.40 Hosseinpoor M, Khayat K H, Yahia A. Materials & Structures, 2017, 50(2),163.41 Hosseinpoor M, Khayat K H, Yahia A, et al. Computers & Concrete, 2017,20(3), 297.42 Mori H, Tanigawa Y. Memoirs of the School of Engineering Nagoya University, 1992, 44, 71.43 Dufour F, Pijaudier-Cabot G.International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 29(4), 395.44 Amberg G, Tonhardt R, Winkler C. Mathmatic and Computers Simulation, 1999, 49(4-5),257.45 Karakurta C,elikb A O, Yilmazer C, et al. Construction & Building Materials, 2018, 186,20.46 Naggar M H E, Nehdi M, Elchabib H. ACI Materials Journal, 2001, 98(5), 394.47 Oh J W, Lee I W, Kim J T, et al. ACI Materials Journal, 1999, 96(1), 61.48 Haj-Ali R, Pecknold D A, Ghaboussi J, et al. Journal of Engineering Mechanics, 2001, 127(7), 730.49 Miroslav Kubat.Neural networks: A comprehensive foundation by Simon Haykin, Macmillan, Cambridge University Press, UK,1999.50 Rumelhart D E. Parallel Distributed Processing, 1986, 323 (6088), 533.51 Elchabib H, Nehdi M. Advances in Cement Research, 2005, 17(3), 91.52 Elchabib H. ACI Materials Journal, 2006, 103(5), 374.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[3] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[4] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[5] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[6] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[7] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[8] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[9] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[10] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[11] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[12] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[13] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[14] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[15] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed