Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1512-1516    https://doi.org/10.11896/cldb.18060067
  无机非金属及其复合材料 |
古建筑修复用石灰基砂浆的研究进展
兰明章1, 聂松1, 王剑锋1, 张巧伟1, 陈智丰2
1 北京工业大学材料科学与工程学院,北京 100124
2 唐山北极熊建材有限公司,唐山 063705
A State-of-the-art Review on Lime-based Mortars for Restoration of Ancient Buildings
LAN Mingzhang1, NIE Song1, WANG Jianfeng1, ZHANG Qiaowei1, CHEN Zhifeng2
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
2 Tangshan Polar Bear Building Materials Co. Ltd., Tangshan 063705
下载:  全 文 ( PDF ) ( 2092KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 古建筑暴露在自然环境中,长年经受日晒雨淋,大多受到了不同程度的破坏。古建筑修复材料一直以来都是文物保护工作者研究的重点。石灰是人类最早使用的无机胶凝材料之一,具有良好的透水性和透气性,与古建筑基体材料兼容,且不会对古建筑造成二次破坏,在古建筑修复领域具有其他材料不可取代的优势。
然而,石灰修复砂浆还存在一些问题,尤其是材料的早期强度低和耐久性不足,严重阻碍了其发展和应用。石灰是一种气硬性胶凝材料,在空气中逐渐结晶和碳化而硬化,其强度发展缓慢。此外,石灰在干燥硬化过程中会失去大量游离水,形成多孔结构,为水分及一些可溶性离子进入浆体内部提供通道,对其抗冻性和抗侵蚀性等造成不利影响。近年来,学者们经过对石灰砂浆组成的不断探索和优化,显著提高了石灰基砂浆的性能。
石灰基砂浆主要包括石灰砂浆、天然水硬性石灰砂浆、石灰-水泥砂浆和石灰-火山灰质材料砂浆四类。石灰砂浆与古建筑的兼容性最好,但由于早期强度低,限制了它的应用。近几年的研究工作集中在探索胶砂比和一些添加剂对石灰砂浆孔隙结构和力学性能的影响规律。天然水硬性石灰含有一定量的水硬性成分硅酸二钙,与气硬性石灰相比,早期强度更高。国内对天然水硬性石灰的研究起步较晚,现已有学者在实验室成功制备出不同强度等级的天然水硬性石灰,但制备工艺尚不成熟。而国外研究人员在天然水硬性石灰中引入适量辅助胶凝材料,获得了性能优异的修复砂浆;石灰-水泥砂浆原料来源广泛,与天然水硬性石灰砂浆的结构及性能相似,但石灰-水泥砂浆与古建筑基体材料的兼容性问题还存在争议。石灰-火山灰质材料砂浆早期强度主要来源于氢氧化钙和火山灰质材料之间的火山灰反应,火山灰反应又与材料的火山灰活性及养护条件密切相关。
本文介绍了四类石灰基古建筑修复砂浆的优缺点及应用现状,阐述了石灰基砂浆结构与性能之间的关系。根据古建筑修复的兼容性要求,指出了石灰基砂浆发展过程中存在的问题,并为石灰基砂浆的进一步研究工作提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
兰明章
聂松
王剑锋
张巧伟
陈智丰
关键词:  古建筑修复  石灰基砂浆  兼容性  强度  耐久性    
Abstract: The ancient buildings has been exposing to natural environment for many years, and most of them are suffered from damages by wind, sunlight and rain, resulting in destruction with various degrees. The research on restoration materials of ancient building has always been the focus for cultural relic conservation. As one of the earliest type of inorganic cementitious materials used by human beings, lime features moderate mechanical strength, favorable permeability and breathability, satisfactory compatibility with ancient buildings, and cause no secondary damage to ancient buildings, showing an irreplaceable advantage in the field of restoration of ancient buildings.
Nevertheless, there are still some problems in the lime-based mortars, especially the low early strength and poor durability, which severely hinders their widespread application. As an air-hardening material, lime is hardened by gradual crystallization and carbonation in air, presenting a slow growth of its strength. Besides, lime will lose a large amount of free water in the process of drying and hardening, forming a porous structure, providing a channel for water and some soluble ions to enter into the slurry, which adversely affecting its frost resistance and erosion resis-tance. In recent years, scholars have optimized the composition of lime mortar, and obtained lime-based mortars with significantly improved pro-perties.
Generally, lime-based mortars include lime mortars, natural hydraulic lime mortars, lime-cement mortars and lime-pozzolan mortars. Lime mortars holds best compatibility with ancient buildings, but the low early strength block their application. The recent research work concentrate on the impact of the lime sand ratio and additives on the pore structure and mechanical properties of lime mortar. Natural hydraulic lime contained a certain amount of hydraulic component dicalcium silicate show superiority in early strength compared with lime. The related research of natural hydraulic lime started late in China. Although natural hydrated lime with different strength grades have been successfully prepared in laboratory, the preparation process is not yet mature. It has been reported that a suitable amount of auxiliary cementing materials have been introduced into natural hydrated lime and excellent repairing mortar has obtained in the research by foreign scholars.Lime-cement mortars come from a wide range of sources and have similar pore structure and performance with natural hydraulic lime mortars. However, the compatibility between lime-cement mortars and the base materials of ancient buildings still remain controversial. The early strength of lime-pozzolan mortars is mainly derived from the volcanic ash reaction between calcium hydroxide and pozzolanic materials, and pozzolanic reaction is closely related to the pozzolanic activity and curing conditions.
In this paper, we introduce the merits, drawbacks and application situation of the four kind of limed-based restoration mortars, describe the relationship between the structure and properties of lime-based mortars. According to the compatibility requirements of ancient buildings restoration, we point out the problems of lime-based mortars, and then make recommendations for further research work.
Key words:  ancient buildings restoration    lime-based mortars    compatibility    strength    durability
                    发布日期:  2019-05-08
ZTFLH:  TU52  
基金资助: 国家自然科学基金创新研究群体项目(51621003)
通讯作者:  lanmingzhang@bjut.edu.cn   
作者简介:  兰明章,北京工业大学材料学院教授、硕士研究生导师,主要从事水泥生产工艺技术与水泥性能及应用研究。参加研究多项国家重点科技攻关项目,获得国家“七五”科技攻关重大成果奖,国家科技进步二等奖各一项,国家建材局部级科技进步一等奖两项;参加编著的《水泥预分解技术与热工系统工程》获国家建材局科技进步二等奖。目前研究方向为生态建筑材料与新型建筑材料。
引用本文:    
兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
LAN Mingzhang, NIE Song, WANG Jianfeng, ZHANG Qiaowei, CHEN Zhifeng. A State-of-the-art Review on Lime-based Mortars for Restoration of Ancient Buildings. Materials Reports, 2019, 33(9): 1512-1516.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060067  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1512
1 Song Y J, Zhou Z J. World Sci-Tech R & D,2017,39(1),39(in Chinese).
宋彦军,周振君.世界科技研究与发展,2017,39(1),39.
2 Zhang Y W, Wang X F, Wu Y T, et al. Materials Review A: Review Papers,2012,26(2),51(in Chinese).
张雅文,王秀峰,伍媛婷,等.材料导报:综述篇,2012,26(2),51.
3 Veiga R. Construction and Building Materials,2017,157,132.
4 Fang S, Zhang K, Zhang H, et al. Cement and Concrete Research,2015,76,232.
5 Wang H W,Zhang J. Journal of Chongqing University of Technology(Na-tural Science),2018(9),144(in Chinese).
汪浩文,张捷.重庆理工大学学报(自然科学),2018(9),144.
6 Silva B A, Pinto A P F, Gomes A. Construction and Building Materials,2015,94,346.
7 Maravelaki-Kalaitzaki P, Bakolas A, Moropoulou A. Cement and Concrete Research,2003,33(5),651.
8 Botas S, Veiga R, Velosa A. Construction and Building Materials,DOI:10.1016/j.conbuildmat.2017.04.027.
9 Lanas J, Alvarez-Galindo J I. Cement and Concrete Research,2003,33(11),1867.
10Maravelaki-Kalaitzaki P, Bakolas A, Karatasios I, et al. Cement and Concrete Research,2005,35(8),1577.
11Grilo J, Silva A S, Faria P, et al. Construction and Building Materials,2014,51(4),287.
12Moropoulou A, Bakolas A, Moundoulas P, et al. Cement and Concrete Composites,2005,27(2),289.
13Dai S B. Heritage Science,2013,1(1),25.
14Li Y, Yu P C, Wang Q, et al. New Building Materials,2017,44(2),73(in Chinese).
李悦,于鹏超,王麒,等.新型建筑材料,2017,44(2),73.
15Barbero-Barrera M M, Medina N F, Guardia-Martín C. Construction and Building Materials,2017,149,599.
16Gleize P J P, Motta E V, Silva D A, et al. Cement and Concrete Compo-sites,2009,31(5),342.
17Marques S F, Ribeiro R A, Silva L M, et al. Cement and Concrete Research,2006,36(10),1894.
18Arandigoyen M, Bicer-Simsir B, Alvarez J I, et al. Applied Surface Science,2006,252(20),7562.
19Arandigoyen M, Alvarez J I. Cement and Concrete Research,2007,37(5),767.
20Lin Z S. Cementitious material science, Wuhan University of Technology Press, China,2014(in Chinese).
林宗寿.胶凝材料学,武汉理工大学出版社,2014.
21Oliveira M A, Azenha M, Lourenço P B, et al. Construction and Building Materials,2017,148,38.
22Özlem Cizer, Balen K V, Elsen J, et al. Construction and Building Materials,2012,35(35),741.
23Lanas J, Sirera R, Alvarez J I. Cement and Concrete Research,2006,36(5),961.
24Lanas J, Sirera R, Alvarez J I. Thermochimica Acta,2005,429(2),219.
25Duran A, Navarro-Blasco I, Fernández J M, et al. Construction and Building Materials,2014,58(58),147.
26Goura K A, Ramadossa R, Selvarajb T. Construction and Building Materials,2018,164,255.
27Lubelli B, Hees R P J V, Huinink H P, et al. Cement and Concrete Research,2006,36(4),678.
28Thaulow N, Sahu S. Materials Characterization,2004,53(2),123.
29Flatt R J. Journal of Crystal Growth,2002,242(3),435.
30Yang H S, Che Y J, Ma X M. Concrete,2015(1),131(in Chinese).
杨华山,车玉君,马小满.混凝土,2015(1),131.
31Pérez-Nicolás M, Duran A, Navarro-Blasco I, et al. Cement and Concrete Research,2016,82,11.
32Izaguirre A, Lanas J, álvarez J I. Cement and Concrete Research,2009,39(11),1095.
33Andrejkoviová S, Velosa A, Gameiro A, et al. Applied Clay Science,2013,83(10),368.
34Callebaut K, Elsen J, Balen K V, et al. Cement and Concrete Research,2001,31(3),397.
35Shen X F, Xue Q H, Xu L, et al. Bulletin of the Chinese Ceramic Society,2013,32(10),1973(in Chinese).
沈雪飞,薛群虎,徐亮,等.硅酸盐通报,2013,32(10),1973.
36Ma H F. The preparation and performance of hydraulic lime. Master’s Thesis, Beijing University of Technology, China,2015(in Chinese).
马海锋.水硬性石灰的制备和性能.硕士学位论文,北京工业大学,2015.
37Billong N, Melo U C, Kamseu E, et al. Construction and Building Materials,2011,25(4),2157.
38Baltazar L G, Henriques F M A, Jorne F, et al. Construction and Buil-ding Materials,2014,50(1),584.
39Xu S, Wang J, Ma Q, et al. Construction and Building Materials,2014,73(73),33.
40Iucolano F, Liguori B, Colella C. Construction and Building Materials,2013,38(1),785.
41Li Y, Yu P C, Liu J P, et al. Journal of Beijing University of Technology,2017,43(2),269(in Chinese).
李悦,于鹏超,刘金鹏,等.北京工业大学学报,2017,43(2),269.
42Papayianni I, Stefanidou M. Construction and Building Materials,2006,20(9),700.
43Maria S. Construction and Building Materials,2010,24(12),2572.
44Mosquera M J, Silva B, Prieto B, et al. Cement and Concrete Research,2006,36(9),1635.
45Arandigoyen M, Bernal J L P, López M A B, et al. Applied Surface Science,2005,252(5),1449.
46Monteiro P J M, Mehta P K. McGraw-Hill Professional,2006,13(4),499.
47Arandigoyen M, Alvarez J I. Applied Surface Science,2006,252(23),8077.
48Gulbe L, Vitina I, Setina J. Procedia Engineering,2017,172,325.
49Teutonico J M, Mccaig I, Burns C, et al. APT Bulletin,1993,25(3-4),32.
50García-Cuadrado J, Rodríguez A, Cuesta I I, et al. Construction and Building Materials,2017,138,204.
51Pacheco-Torgal F, Faria J, Jalali S. Construction and Building Mate-rials,2012,30(5),488.
52Sepulcre-Aguilar A, Hernández-Olivares F. Cement and Concrete Research,2010,40(1),66.
53Nunes C, Slíková Z. Construction and Building Materials,2016,114,896.
54Navrátilová E, Rovnaníková P. Construction and Building Materials,2016,120,530.
55Tironi A, Trezza M A, Scian A N, et al. Cement and Concrete Compo-sites,2013,37(1),319.
[1] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[2] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[3] 张景卫, 李地红, 高群, 于海洋, 代函函. 橡胶形态及分布对水泥制品抗冲击能力的影响[J]. 材料导报, 2019, 33(z1): 261-263.
[4] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[5] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[6] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[7] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[8] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[9] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[10] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[11] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[12] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[13] 都蓉蓉, 张雄, 顾明东, 季涛. 聚羧酸减水剂与增强组分的复合效应及原理[J]. 材料导报, 2019, 33(14): 2461-2466.
[14] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[15] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed