Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1224-1229    https://doi.org/10.11896/j.issn.1005-023X.2018.08.004
  材料研究 |
醇胺改性氧化石墨烯的制备及二氧化硫吸附性能
李金伟, 黄莉兰, 辛清萍, 叶卉, 赵莉芝, 丁晓莉, 林立刚, 王少飞, 张玉忠
天津工业大学材料科学与工程学院,省部共建分离膜与膜过程国家重点实验室,天津 300387
Preparation of Alcoholamine-modified Graphene Oxide with an Application to Sulfur Dioxide Adsorption
LI Jinwei, HUANG Lilan, XIN Qingping, YE Hui, ZHAO Lizhi, DING Xiaoli, LIN Ligang, WANG Shaofei, ZHANG Yuzhong
State Key Laboratory of Separation Membranes and Membranes Processes, School of Material Science and Engineering,Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 2961KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固体吸附剂在烟道气脱硫方面具有很大的潜力。以氧化石墨烯(GO)为基底材料,通过乙醇胺(MEA)、二乙醇胺(DEA)和三乙醇胺(TEA)对氧化石墨烯进行改性,得到了GO-MEA、GO-DEA和GO-TEA三种用于吸附SO2的固体吸附剂。利用扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)、能量色散X射线能谱(EDS)、元素分析(EA)等手段对其进行表征,并采用称重法测定了醇胺改性氧化石墨烯对SO2气体的吸附性能。结果表明,醇胺改性氧化石墨烯对SO2的吸附性能相比未改性氧化石墨烯有较大提高,其中GO-DEA的SO2吸附性能最好,15 h后平衡吸附量达到188.5 mg/g。在130 ℃、真空条件下进行解吸,经过五次循环之后吸附量依然保持在165.3 mg/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李金伟
黄莉兰
辛清萍
叶卉
赵莉芝
丁晓莉
林立刚
王少飞
张玉忠
关键词:  氧化石墨烯  醇胺  SO2  吸附    
Abstract: Solid adsorbent has displayed great application potential in the field of flue gas desulfurization. In this study, using GO as substrate material and the alcoholamines such as ethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) as modifiers, we prepared GO-MEA,GO-DEA and GO-TEA as adsorbents for SO2, and conducted the characterization by means of scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectrometry (EDS) and elemental analysis (EA). The SO2adsorption capacities of the products were also determined by gravimetric method. Our experiment validated the significantly improved SO2 adsorption capacities of the three types of alcoholamine-immobilized GOs compared to ordinary GO. In particular, GO-DEA exhibits promising adsorption performance toward SO2, as the equilibrium adsorption capacity within 15 h is 188.5 mg/g initially and 165.3 mg/g after five cycles in which the desorption was processed under vacuum at 130 ℃.
Key words:  graphene oxide    alcoholamine    SO2    adsorption
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TQ028  
基金资助: 国家自然科学基金(21676201;51503146)
通讯作者:  张玉忠:通信作者,男,1963年生,博士,教授,主要研究方向为功能膜材料 E-mail:zhangyz2004cn@vip.163.com   
作者简介:  李金伟:男,1990年生,硕士研究生,主要研究方向为脱硫用二维吸附材料 E-mail:2710997792@qq.com
引用本文:    
李金伟, 黄莉兰, 辛清萍, 叶卉, 赵莉芝, 丁晓莉, 林立刚, 王少飞, 张玉忠. 醇胺改性氧化石墨烯的制备及二氧化硫吸附性能[J]. 《材料导报》期刊社, 2018, 32(8): 1224-1229.
LI Jinwei, HUANG Lilan, XIN Qingping, YE Hui, ZHAO Lizhi, DING Xiaoli, LIN Ligang, WANG Shaofei, ZHANG Yuzhong. Preparation of Alcoholamine-modified Graphene Oxide with an Application to Sulfur Dioxide Adsorption. Materials Reports, 2018, 32(8): 1224-1229.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.004  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1224
1 Xiong Y W. Harm of SO2 pollution and progress of its control techniques in our country[J].Ming Safety & Environmental Protection,2000,27(3):37(in Chinese).
熊云威.我国SO2污染危害及其治理技术的进展[J].矿业安全与环保,2000,27(3):37.
2 Pan D, Yu R, Bao J, et al. Emission and formation characteristics of aerosols from ammonia-based wet flue gas desulfurization[J].Energy & Fuels,2015,30(1):666.
3 Zhang Y, Gao Y H, Wang G D, et al. Seawater flue gas desulfurization and post-desulfurization seawater recovery[C]∥Advanced Materials Research. Switzerland: Trans Tech Publications,2011:662.
4 Lee K T, Bhatia S, Mohamed A R, et al. Optimizing the specific surface area of fly ash-based sorbents for flue gas desulfurization[J].Chemosphere,2006,62(1):89.
5 Rajendra S, Raghunath C V, Mondal M K. New experimental data for absorption of SO2 into DMA solution[J].Environmental Progress & Sustainable Energy,2016,35(5):1298.
6 Zhao Y, Zhang X, Zhen Y, et al. Novel alcamines ionic liquids based solvents: Preparation, characterization and applications in carbon dioxide capture[J].International Journal of Greenhouse Gas Control,2011,5(2):367.
7 Tailor R, Ahmadalinezhad A, Sayari A. Selective removal of SO2 over tertiary amine-containing materials[J].Chemical Engineering Journal,2014,240:462.
8 Khatri R A, Chuang S S C, Soong Y, et al. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture[J].Energy & Fuels,2006,20(4):1514.
9 Gadipelli S, Guo Z X. Graphene-based materials: Synthesis and gas sorption, storage and separation[J].Progress in Materials Science,2015,69:1.
10 Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications[J].Chemical Reviews,2012,112(11):6027.
11 Seredych M, Bandosz T J. Effects of surface features on adsorption of SO2 on graphite oxide/Zr(OH)4 composites[J].The Journal of Physical Chemistry C,2010,114(34):14552.
12 Long Y, Zhang C, Wang X, et al. Oxidation of SO2 to SO3catalyzed by graphene oxide foams[J].Journal of Materials Chemistry,2011,21(36):13934.
13 Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
14 Yang H, Zhao X J, Zhao J G. Preparation and structural characte-rization of graphene oxide by pressurized oxidation[J].Journal of Shanxi Datong University (Natural Science Edition),2014,30(6):39(in Chinese).
杨辉,赵小娟,赵建国.氧化石墨烯制备及其结构表征[J].山西大同大学学报:自然科学版,2014,30(6):39.
15 Wan W, Li L, Zhao Z, et al. Ultrafast fabrication of covalently cross-linked multifunctional graphene oxide monoliths[J].Advanced Functional Materials,2014,24(31):4915.
16 王保安, 刘梅. 胺类化合物的碱性强弱顺序[J].焦作师范高等专科学校学报,2003,19(4):58.
17 Liu X L, Guo J X, Chu Y H, et al. Desulfurization performance of iron supported on activated carbon[J].Fuel,2014,123:93.
18 Zhao L, Bi S, Pei J, et al. Adsorption performance of SO2 over ZnAl2O4 nanospheres[J].Journal of Industrial and Engineering Chemistry,2016,41:151.
19 Lee H J, Lee K I, Kim M, et al. Diamine-anchored polystyrene re-sins for reversible SO2 adsorption[J].ACS Sustainable Chemistry & Engineering,2016,4(4):2012.
20 Yun S, Lee H, Lee W E, et al. Multiscale textured, ultralight graphene monoliths for enhanced CO2 and SO2 adsorption capacity[J].Fuel,2016,174:36.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[4] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[5] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[6] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[7] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[8] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[9] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[10] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[11] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[12] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[13] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[14] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[15] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed