Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 156-162    https://doi.org/10.11896/j.issn.1005-023X.2017.023.023
  第一届先进胶凝材料研究与应用学术会议 |
复合无机水合盐对磷酸镁水泥水化及性能的影响*
赵思勰1, 晏华1, 汪宏涛1, 李云涛1, 戴丰乐1, 薛明2, 胡志德1
1 后勤工程学院化学与材料工程系,重庆 401311;
2 后勤工程学院建筑与环境工程系,重庆 401311
Effect of Composite Hydrated Salt on Hydration and Properties of Magnesium Phosphate Cement
ZHAO Sixie1, YAN Hua1, WANG Hongtao1, LI Yuntao1, DAI Fengle1, XUE Ming2, HU Zhide1
1 Department of Chemical and Material Engineering, Logistical Engineering University, Chongqing 401311;
2 Department of Architecture and Environment Engineering, Logistical Engineering University, Chongqing 401311
下载:  全 文 ( PDF ) ( 7158KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将三种无机水合盐Na2B4O7·10H2O、Na2SO4·10H2O和Ca(NO3)2·4H2O按照最优比例(质量比为1.5∶7∶1.5)复掺得到复合无机水合盐FH,比较了单掺硼砂的磷酸钾镁水泥(MKPC)NB10与不同FH掺量下MKPC(FH-MKPC)的工作性能、绝热温升及抗压强度。利用XRD、TG-DSC及SEM等微观分析手段,结合水化放热速率曲线研究了FH对MKPC早期水化历程的影响。结果表明:FH延缓了MKPC的水化,使得水化温升曲线出现诱导期和两个温度峰,水化放热速率和水化温峰值降低。FH的掺入(>8%)大幅延长了MKPC的凝结时间,增强了MKPC的施工可操作性。FH掺量越多,MKPC凝结时间不断延长,流动度提高,早期强度降低。FH掺量为8%的FH-MKPC初凝时间达到25.20 min,较NB10延长了90.76%,同时水化产物的早期生成量和热稳定性更高, 7 h、1 d和3 d抗压强度略高于NB10。为保证MKPC符合施工需要又满足强度要求,FH的最佳掺量为8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵思勰
晏华
汪宏涛
李云涛
戴丰乐
薛明
胡志德
关键词:  复合无机水合盐  磷酸钾镁水泥(MKPC)  水化温升  凝结时间  水化产物  最佳掺量    
Abstract: According to optimal proportion(1.5∶7∶1.5, mass ratio), composite hydrated salt(FH) was prepared by blending three categories of hydrated salt Na2B4O7·10H2O, Na2SO4·10H2O and Ca(NO3)2·4H2O. Work performance, hydration temperature and compressive strength of magnesium potassium phosphate cement(MKPC) mixed with borax NB10 and mixed with different content of FH(FH-MKPC) were compared. Combining hydration heat evolution curve, influence of FH on early hydration of MKPC was investigated by XRD, TG-DSC and SEM microcosmic analysis methods. The result showed FH slowed down the hydration of MKPC, which made hydration temperature rise curve have induction and two temperature peak, and diminished hydration heat evolution rate and hydration temperature peak value. The addition of FH(>8%) prolonged setting time of MKPC largely, enhancing construction operability. With the content of FH increase, setting time of MKPC prolonged, fluidity increased and early compressive strength decreased. Initial setting time of FH-MKPC mixed with 8% FH could reach 25.20 min, prolonged 90.76%, compared with NB10. At the same time, amount and thermal stability of hydration products of early hydration stage of FH-MKPC was higher, 7 h, 1 d and 3 d compressive strength were also slightly higher than former. In order to meet the requirement of construction and strength, optimal content of FH was 8%.
Key words:  composite hydrated salt    magnesium potassium phosphate cement (MKPC)    hydration temperature    setting time    hydration products    optimal content
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: *国家自然科学基金(51272283)
通讯作者:  胡志德:男,博士,讲师,主要从事智能材料的制备及性能研究 E-mail:huzd6503@163.com   
作者简介:  赵思勰:男,1994年生,硕士研究生,主要从事相变材料和磷酸镁水泥研究 E-mail:1527794185@qq.com
引用本文:    
赵思勰, 晏华, 汪宏涛, 李云涛, 戴丰乐, 薛明, 胡志德. 复合无机水合盐对磷酸镁水泥水化及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 156-162.
ZHAO Sixie, YAN Hua, WANG Hongtao, LI Yuntao, DAI Fengle, XUE Ming, HU Zhide. Effect of Composite Hydrated Salt on Hydration and Properties of Magnesium Phosphate Cement. Materials Reports, 2017, 31(23): 156-162.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.023  或          http://www.mater-rep.com/CN/Y2017/V31/I23/156
1 Wang H T,Qian J S, Wang J G. Review of magnesia-phosphate cement[J]. Mater Rev, 2005,19(12):46(in Chinese).
汪宏涛, 钱觉时, 王建国. 磷酸镁水泥的研究进展[J]. 材料导报, 2005,19(12):46.
2 Yang Q, Zhu B, Wu X. Characteristics durability test of magnesium phosphate cement-based material for rapid repair of concrete[J]. Mater Struct, 2000,33(4):229.
3 Ding Z, Li Z. High-early-strength magnesium phosphate cement with fly ash[J]. ACI Mater J, 2005,102(6):375.
4 Buj I, Torras J, Rovira M, et al. Leaching behavior of magnesium phosphate cements containing high quantities of heavy metals[J]. J Hazardous Mater, 2010,175(1):789.
5 Ji F, Jiao B X, Qiu T. The effects of urea on setting time and hydration exothermic of magnesium phosphate cement[J]. China Concr Cem Res, 2013(5):1(in Chinese).
吉飞, 焦宝祥, 丘泰.尿素对磷酸镁水泥凝结时间和水化放热的影响[J]. 混凝土与水泥制品, 2013(5):1.
6 Li Y T,Yan H,Wang H T,et al. Preparation of composite phase change materials and its effect on the hydration heat of magnesium phosphate cement[J]. J Funct Mater, 2016,47(7):07211(in Chinese).
李云涛, 晏华, 汪宏涛, 等. 复合相变材料的制备及其对磷酸镁水泥水化热的影响[J].功能材料, 2016,47(7):07211.
7 Li Y T, Yan H, Wang H T, et al. Effect of paraffin/expand graphite composite phase change material on the hydration performance of magnesium phosphate cement[J]. Bull Chin Ceram Soc, 2016,35(9):3007(in Chinese).
李云涛, 晏华, 汪宏涛, 等. 石蜡/膨胀石墨复合相变材料对磷酸镁水泥水化性能的影响[J]. 硅酸盐通报, 2016,35(9):3007.
8 Yang J M. Control on setting time and water stability of magnesium-potassium phosphate cement and mechanism[D]. Nanjing: Southeast University, 2011(in Chinese).
杨建明. 磷酸钾镁水泥凝结时间和水稳定性的调控及其机理[D]. 南京: 东南大学, 2011.
9 Yang J M, Qian C X, Jiao B X, et al. Effect of borax on hydration hardening of potassium and magnesia-phosphate cement paste[J]. J Mater Eng, 2010,28(1):31(in Chinese).
杨建明, 钱春香, 焦宝祥,等. 缓凝剂硼砂对磷酸镁水泥水化硬化特性的影响[J]. 材料科学与工程学报, 2010,28(1):31.
10Lai Z Y, Lai X, Shi J, et al. Effect of Zn2+ on the early hydration behavior of potassium phosphate based magnesium phosphate cement[J]. Constr Build Mater, 2016,129:70.
11Yang J M, Qian C X, Jiao B X, et al. Effect of NaH2PO4?10H2O on hydration hardening of potassium and magnesium phosphate cement[J]. J Build Mater, 2011,3(14):299(in Chinese).
杨建明, 钱春香, 焦宝祥, 等. NaH2PO4?10H2O对磷酸镁水泥水化硬化特性的影响[J]. 建筑材料学报, 2011,3(14):299.
12Chang Y, Shi C J, Yang N, et al. Effect of fineness of magnesium oxide on properties of magnesium potassium phosphate cement[J]. J Chin Ceram Soc, 2013,41(4):492(in Chinese).
常远, 史才军, 杨楠, 等. 不同细度 MgO 对磷酸钾镁水泥性能的影响[J]. 硅酸盐学报, 2013,41(4):492.
13Yang K R, Zhang C W, Guo Y H, et al. Study on retarding the set of sulphoaluminate cement[J]. J Chin Ceram Soc, 2002,30(2):155(in Chinese).
杨克锐, 张彩文, 郭永辉, 等. 延缓硫铝酸盐水泥凝结的研究[J]. 硅酸盐学报, 2002,30(2):155.
14Wang Z L, Liu K, Zhang C. Mechanism of hydration reaction in magnesia-phosphate cement[J]. Mater Rev, 2014,28(s2):323(in Chinese).
王中良, 刘凯, 张超. 磷酸镁胶凝材料的水化机理研究[J]. 材料导报, 2014,28(专辑24):323.
15Yang J M, Shi C J, Chang Y, et al. Hydration and hardening characteristics of magnesium potassium phosphate cement paste containing composite retarders[J]. J Build Mater, 2013,16(1):43(in Chinese).
杨建明, 史才军, 常远, 等. 掺复合缓凝剂的磷酸钾镁水泥浆体的水化硬化特性[J]. 建筑材料学报, 2013,16(1):43.
16Zhang S H. Study on the performance and mechanism of magnesium phosphate cement in solidifying Sr2+, Cs+[D]. Chongqing: Logistical Engineering University, 2016(in Chinese).
张时豪.磷酸镁水泥固化核素Sr2+、Cs+的性能及机理研究[D].重庆: 后勤工程学院, 2016.
17Duan X Y, Lv S Z, Lai Z Y, et al. Preparation of a multi-composite retarder and its effect on properties of magnesium phosphate cement[J]. J Wuhan University of Technology, 2014,36(10):20(in Chinese).
段新勇, 吕淑珍, 赖振宇, 等. 多元复合缓凝剂制备及其对磷酸镁水泥性能的影响[J]. 武汉理工大学学报, 2014,36(10):20.
18Wang H T, Ding J H, Zhang S H, et al. Study on the influence of magnesium phosphate cement hydration heat[J]. J Funct Mater, 2015,46(22):22098(in Chinese).
汪宏涛, 丁建华, 张时豪, 等. 磷酸镁水泥水化热的影响因素研究[J].功能材料, 2015,46(22):22098.
[1] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[2] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[3] 余鑫, 于诚, 冉千平, 刘加平. 基于Rietveld外标法的水泥及其水化产物定量分析[J]. 材料导报, 2019, 33(14): 2337-2342.
[4] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[5] 何旸, 钱文勋, 张燕迟, 蔡跃波, 王新. 高速水流下空蚀热效应对水泥水化产物的破坏[J]. 材料导报, 2018, 32(24): 4281-4285.
[6] 唐芮枫, 王子明, 何欢, 张琳, 蔡扬扬, 王杰. 聚羧酸系减水剂复配β-环糊精对高贝利特硫铝酸盐水泥性能的影响[J]. 材料导报, 2018, 32(22): 4000-4005.
[7] 李振国, 刘博, 吴运强, 王博, 郭江涛, 余四文. 碱式硫酸镁水泥耐酸腐蚀性能研究[J]. 材料导报, 2018, 32(16): 2733-2737.
[8] 姚晓光,张万磊, 张争奇,栗培龙. 老化SBS改性沥青二次改性再生工艺及机理研究[J]. 《材料导报》期刊社, 2017, 31(24): 79-85.
[9] 赵思勰, 晏华, 汪宏涛, 李云涛, 张寒松, 胡志德. Na2SO4·10H2O对磷酸钾镁水泥水化硬化的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 187-192.
[10] 吕生华, 孙立, 张佳, 胡浩岩, 雷颖, 侯永刚. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*[J]. CLDB, 2017, 31(23): 78-84.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed