Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 150-155    https://doi.org/10.11896/j.issn.1005-023X.2017.023.022
  第一届先进胶凝材料研究与应用学术会议 |
氧化石墨烯增强水泥基复合材料的研究现状及展望*
徐亦冬1, 曾鞠庆1, 2, 陈伟1, 毛江鸿1, 沈建生1, 胡丹烨1
1 浙江大学宁波理工学院土木建筑工程学院,宁波315100;
2 江苏科技大学土木工程与建筑学院,镇江212003
A State-of-the-art Review on Graphene Oxide Reinforced Cement Based Composites
XU Yidong1, ZENG Juqing1, 2, CHEN Wei1, MAO Jianghong1, SHEN Jiansheng1, HU Danye1
1 School of CML Engineering &Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100;
2 School of Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003
下载:  全 文 ( PDF ) ( 2389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥水化进程复杂,所形成的水化产物缺陷较多,因而导致水泥基复合材料的力学性能及耐久性较差,如何对水泥水化行为进行调控成为了研究的热点。氧化石墨烯(GO)是由石墨氧化制备石墨烯的中间产物,因其存在大量的活性基团,在水泥基复合材料领域具有广阔的应用前景。概述了氧化石墨烯的选择及制备,论述了氧化石墨烯增强水泥基复合材料的流变性、微结构、物理力学性能及耐久性,重点阐述了氧化石墨烯对水泥基复合材料水化及性能调控的作用机理,针对当前研究中存在的问题进行了总结,并对未来的研究工作进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐亦冬
曾鞠庆
陈伟
毛江鸿
沈建生
胡丹烨
关键词:  氧化石墨烯  水泥基复合材料  性能调控    
Abstract: The hydration process of cement is complex, and the formed hydration products have many defects, which lead to the poor mechanical properties and durability of cement based composites. How to control the hydration behavior of cement has become the focus of research. Graphene oxide (GO) is an intermediate product for the graphene preparation by graphite oxidation, which has a large number of active groups and possesses wide application prospect in the field of cement based composites. This paper presents a state-of-the-art report of rheological properties, microstructure, mechanical properties and durability of cement based composites reinforced by graphene oxide. The regulation mechanism of graphene oxide on the hydration and performance of cement-based composites is emphasized. The existing problems in current researches are summarized, and the future research work is proposed.
Key words:  graphene oxide    cement based composites    performance regulation
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU525  
基金资助: *国家科技支撑计划课题(2015BAL02B03); 国家自然科学基金(51778577); 浙江省自然科学基金(LY15E080025)
作者简介:  徐亦冬:男,1980年生,博士,副教授,硕士研究生导师,主要从事先进土木工程材料的研究 E-mail:xyd@nit.zju.edu.cn
引用本文:    
徐亦冬, 曾鞠庆, 陈伟, 毛江鸿, 沈建生, 胡丹烨. 氧化石墨烯增强水泥基复合材料的研究现状及展望*[J]. 《材料导报》期刊社, 2017, 31(23): 150-155.
XU Yidong, ZENG Juqing, CHEN Wei, MAO Jianghong, SHEN Jiansheng, HU Danye. A State-of-the-art Review on Graphene Oxide Reinforced Cement Based Composites. Materials Reports, 2017, 31(23): 150-155.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.022  或          http://www.mater-rep.com/CN/Y2017/V31/I23/150
1 孙伟,缪昌文. 现代混凝土理论与技术[M]. 北京: 科学出版社, 2012.
2 Lv S H, Deng L J, Yang W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites[J]. Cem Concr Compos, 2016, 66:1.
3 Saafi M, Tang L, Fung J, et al. Enhanced properties of graphene/fly ash geopolymeric composite cement[J]. Cem Concr Res, 2015, 67:292.
4 Ranjbar N, Mehrali M, Mehrali M, et al. Graphene nanoplatelet-fly ash based geopolymer composites[J]. Cem Concr Res, 2015, 76:222.
5 Du H, Pang S D. Enhancement of barrier properties of cement mortar with graphene nanoplatelet[J]. Cem Concr Res, 2015, 76:10.
6 Pan Z, He L, Qiu L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cem Concr Compos, 2015, 58:140.
7 Lv S, Zhang J, Zhu L, et al. Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability[J]. Materials, 2016, 9(11):924.
8 Lv S, Zhang J, Zhu L, et al. Preparation of regular cement hydration crystals and ordered microstructures by doping GON and an investigation into its compressive and flexural strengths[J]. Crystals, 2017, 7(6):165.
9 Lv S H, Cui Y Y, Sun T, et al. Effects of graphene oxide on fluidity of cement paste and structure and properties of hardened cement paste[J]. J Funct Mater, 2015, 46(4):4051(in Chinese).
吕生华,崔亚亚,孙婷,等. 氧化石墨烯对水泥净浆流动度及水泥石结构和性能的影响[J]. 功能材料, 2015, 46(4):4051.
10 Lv S H, Ding H D, Sun T, et al. Effect of naphthalene superplasticizer/graphene oxide composite on microstructure and mechanical properties of hardened cement paste[J]. J Shaanxi University of Science and Technology (Natural Science Edition), 2014, 32(5):42(in Chinese).
吕生华,丁怀东,孙婷,等. 萘系减水剂/氧化石墨烯复合材料对水泥石微观结构和性能的影响[J]. 陕西科技大学学报(自然科学版), 2014, 32(5):42.
11 Lv S H, Zhang J, Zhu L L, et al. Regulation of graphene oxide on microstructure of cement composites and its impact on compressive and flexural strength[J]. CIESC J, 2017, 68(6):2585(in Chinese).
吕生华,张佳,朱琳琳,等. 氧化石墨烯对水泥基复合材料微观结构的调控作用及对抗压抗折强度的影响[J]. 化工学报, 2017, 68(6):2585.
12 Lv S, Qiu C, Ma Y, et al. Regulation of GO on cement hydration crystals and its toughening effect[J]. Mag Concr Res, 2013, 65(20):1246.
13 Horszczaruk E, Mijowska E, Kalenczuk R J, et al. Nanocomposite of cement/graphene oxide-Impact on hydration kinetics and Young’s modulus[J]. Constr Build Mater, 2015, 78:234.
14 Lv SH, Sun T, Liu JJ, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites[J]. Acta Mater Compos Sin, 2014, 31(3):644(in Chinese).
吕生华,孙婷,刘晶晶,等. 氧化石墨烯纳米片层对水泥基复合材料的增韧效果及作用机制[J]. 复合材料学报, 2014, 31(3):644.
15 Mohammed A, Sanjayan J G, Duan W H, et al. Incorporating graphene oxide in cement composites:A study of transport properties[J]. Constr Build Mater, 2015, 84:341.
16 Gao D G, Ma Y J. Preparation and properties of copolymer of graphene oxide and monomers of polycarboxylate superplasticizer[J]. Fine Chem, 2015, 32(1):103(in Chinese).
高党国,马宇娟. 氧化石墨烯与聚羧酸减水剂单体共聚物的制备与性能[J]. 精细化工, 2015, 32(1):103.
17 Shang Y, Zhang D, Yang C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Constr Build Mater, 2015, 96:20.
18 Li X, Wei W, Qin H, et al. Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement[J]. J Phys Chem Solids, 2015, 85:39.
19 Chen J, Zhao D, Ge H, et al. Graphene oxide-deposited carbon fiber/cement composites for electromagnetic interference shielding application[J]. Constr Building Mater, 2015, 84:66.
20 Wang M, Yao H, Wang R, et al. Chemically functionalized graphene oxide as the additive for cement-matrix composite with enhanced fluidity and toughness[J]. Constr Build Mater, 2017, 150:150.
21 Lv S H, Ma Y J, Qiu C C, et al. Study on reinforcing and toughening of graphene oxide to cement-based composites[J]. J Funct Mater, 2013, 44(15):2227(in Chinese).
吕生华,马宇娟,邱超超,等. 氧化石墨烯增强增韧水泥基复合材料的研究[J]. 功能材料, 2013, 44(15):2227.
22 Wang Q, Wang J, Lu C, et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement[J]. New Carbon Mater, 2015, 30(4):349.
23 Mokhtar M M, Abo-El-Enein S A, Hassaan M Y, et al. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement[J]. Constr Build Mater, 2017, 138:333.
24 Lv S, Liu J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J]. Constr Build Mater, 2014, 64:231.
25 Cui H, Yan X, Tang L, et al. Possible pitfall in sample preparation for SEM analysis—A discussion of the paper “Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites” by Lv et al[J]. Cem Concr Composi 2017, 77:81.
26 Tong T, Fan Z, Liu Q, et al. Investigation of the effects of graphene on the micro-and macro-properties of cementitious materials[J]. Constr Build Mater, 2016, 106:102.
27 Gong K, Pan Z, Korayem A H, et al. Reinforcing effects of graphene oxide on portland cement paste[J]. J Mater Civil Eng,2015,27(2):A4014010.
28 Yang Y L, Yuan X Y, Shen X, et al. Research on the corrosion resistance of graphene oxide on cement mortar[J]. J Funct Mater, 2017, 48(5):5144(in Chinese).
杨雅玲,袁小亚,沈旭,等. 氧化石墨烯改性水泥砂浆耐腐蚀性能的研究[J]. 功能材料, 2017, 48(5):5144.
29 Lu Z, Li X, Hanif A, et al. Early-age interaction mechanism between the graphene oxide and cement hydrates[J]. Constr Build Mater, 2017, 152:232.
[1] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[4] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[5] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[6] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
[7] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[8] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[9] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[10] 李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
[11] 林珊, 史永堂, 王盈盈, 逄贝莉. 利用石墨烯基空穴传输层提升有机太阳能电池性能[J]. 材料导报, 2019, 33(12): 1945-1948.
[12] 赵晓光, 欧阳静, 张毅, 杨华明. 矿物基摩擦材料的研究进展[J]. 材料导报, 2019, 33(11): 1860-1868.
[13] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[14] 薛雅楠, 韩政学, 李爽然, 张佳宇, 张雪慧, 王兆伟, 贾瑞洁, 王艳芹, 武晓刚, 李晓娜, 陈维毅. 纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质[J]. 材料导报, 2019, 33(10): 1745-1751.
[15] 褚 梅, 李 曦, 李 娜, 侯美静, 李小争, 董永志, 王 璐. 通过与氧化石墨烯复合增强金属有机框架材料MOF(Ni)-74的电催化析氢性能[J]. 《材料导报》期刊社, 2018, 32(9): 1417-1422.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed