Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 163-170    https://doi.org/10.11896/j.issn.1005-023X.2017.023.024
  第一届先进胶凝材料研究与应用学术会议 |
混凝土硫化性能研究进展*
牛荻涛, 吕瑶, 刘西光
西安建筑科技大学土木工程学院,西安 710055
A Review on Sulfuration Properties of Concrete
NIU Ditao, LU Yao, LIU Xiguang
School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055
下载:  全 文 ( PDF ) ( 1276KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 工业生产大量排放SO2,使混凝土发生硫化发应,对混凝土结构的耐久性造成了严重影响。国内外混凝土中性化研究多集中于一般大气环境下的混凝土碳化问题,混凝土硫化研究较少。总结了近年来有关混凝土硫化问题的研究现状,从硫化机理出发,分析了硫化后混凝土的性能劣化规律,探讨了混凝土硫化速率的影响因素,并讨论了当前有关混凝土硫化研究的一些重要问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛荻涛
吕瑶
刘西光
关键词:  二氧化硫  混凝土  硫化机理  劣化规律    
Abstract: A large amount of SO2 gas from industrial production reacts with concrete, which has a serious influence on durabi-lity of concrete structure. The domestic and foreign researches of concrete neutralization mainly focus on the concrete carbonation in general atmospheric environment;nevertheless, scant studies concern concrete sulfuration. This paper summarizes the research of concrete sulfuration in recent years, and reveals the mechanism of concrete sulfuration. The concrete deteriorated properties suffered sulfuration are analysed, and the influence factors of concrete sulfuration are considered. Finally, some important issues of are discussed.
Key words:  sulfur dioxide    concrete    sulfated mechanism    deterioration
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家重点研发计划(2016YFC0701304); 教育部“创新团队发展计划”(IRT_17R84); 中国博士后科学基金(2016M602940XB); 西安建筑科技大学优秀博士论文培育基金
作者简介:  牛荻涛:男,1963年生,教授,博士研究生导师,主要从事混凝土结构耐久性方面的研究 E-mail:niuditao@163.com;吕瑶:女,1992年生,博士研究生,主要从事混凝土结构耐久性方面的研究 E-mail:lvyaozuibangde@163.com
引用本文:    
牛荻涛, 吕瑶, 刘西光. 混凝土硫化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(23): 163-170.
NIU Ditao, LU Yao, LIU Xiguang. A Review on Sulfuration Properties of Concrete. Materials Reports, 2017, 31(23): 163-170.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.024  或          http://www.mater-rep.com/CN/Y2017/V31/I23/163
1 梅塔,蒙特罗著. 混凝土: 微观结构、性能和材料[M].第3版. 谭维祖,王栋民,丁建彤译. 北京:中国电力出版社, 2008:3.
2 金伟良,赵羽习. 混凝土结构耐久性[M].北京:科学出版社, 2014: 1.
3 Liu R J, Zhang Z H. Study on the trend of sulfur dioxide emission in China and its influencing factors[J]. Environ Pollut Contr, 2012, 34(10):100(in Chinese).
刘睿劼,张智慧. 中国工业二氧化硫排放趋势及影响因素研究[J]. 环境污染与防治, 2012, 34(10): 100.
4 Zeng X G, Ni H H, Chen G. Analysis on SO2 emission trend and impact factor in China industry[J]. Chin Environ Prot Ind, 2009(10): 19(in Chinese).
曾贤刚,倪宏宏,陈果. 我国工业SO2排放趋势及影响因素分析[J]. 中国环保产业, 2009(10):19.
5 中国环境状况公报[R]. 中国人民共和国环境保护部, 2014.
6 Yin Qi. The research about the relationship between the industrial carbon dioxide emission and the industrial restructuring of China[D]. Changsha: Hunan University, 2012(in Chinese).
殷琪. 我国工业二氧化碳排放与工业结构调整的关系研究[D]. 长沙:湖南大学, 2012.
7 阿列克谢耶夫.钢筋混凝土结构中钢筋腐蚀与保护[M]. 黄可信,吴兴祖,蒋仁敏,等译.北京:中国建筑工业出版社,1983.
8 Yan B, Wang Y Q. Study on durability of reinforced concrete affec-ted by atmosphere pollution [J]. Harb Univ Civ Eng Archit, 2000,33(3):39(in Chinese).
闫波,王幼青. 大气污染对钢筋混凝土结构耐久性影响研究[J]. 哈尔滨建筑大学学报,2000,33(3):39.
9 Papadakis V G, Vayenas C G, Fardis M N. A reaction engineering approach to the problem of concrete carbonation[J]. Aiche J, 1989, 35(10):1639.
10 Papadakis V G, Vayenas C G, Fardis M N. Physical and chemical characteristics affecting the durability of concrete[J]. ACI Mater J,1991, 88(2):18.
11 Papadakis V G, Vayenas C G, Fardis M N. Fundamental modeling and experimental investigation of concrete carbonation [J]. ACI Mater J, 1991, 88(4):363.
12 牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京:科学出版社,2003.
13 Pu Q, Jiang L H, Xu J X, et al. Evolution of pH and chemical composition of pore solution in carbonated concrete[J]. Constr Build Mater, 2012, 28(1):519.
14 Chang C F, Chen J W. The experimental investigation of concrete carbonation depth[J]. Cem Concr Res, 2006, 36(9):1760.
15 Ji Y S. Comparison of concrete carbonation process under natural condition and high CO2 concentration environments[J]. J Wuhan Univ Technol, 2010, 25(3):515.
16 Hussain S, Bhunia D, Singh S B. Comparative study of accelerated carbonation of plain cement and fly-ash concrete[J]. J Build Eng, 2017, 10:21.
17 Kunthongkeaw J, Tangtermsisikul S, Leelawat T. A study on carbonation depth prediction for fly ash concrete[J]. Constr Build Mater, 2006, 20(20):744.
18 Saetta A V, Schrefler B A, Vitaliani R V. The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials[J]. Cem Concr Res, 1993, 23(4):761.
19 Jiang C, Huang Q H, Gu X L. Experimental investigation on carbonation in fatigue-damaged concrete[J]. Cem Concr Res, 2017, 99:38.
20 Mainier F B, Almeida P C F, Nani B, et al. Corrosion caused by sulfur dioxide in reinforced concrete[J]. Open J Civ Eng, 2015, 5(4):379.
21 Yang Pengfei. The research on the corrosion rules of concrete in the sulfur dioxide environment[D]. Baotou: Inner Mongolia University of Science and Technology, 2013(in Chinese).
杨鹏飞. 混凝土在二氧化硫环境中的腐蚀规律研究[D]. 包头:内蒙古科技大学, 2013.
22 Pavlik V, Bajza A, Rousekouva I, et al. Degradation of concrete by flue gases from coal combustion[J]. Cem Concr Res, 2007, 37(7):1085.
23 Baird C, Cann M. Environmental chemisty[M]. New York: WH Freeman, 2012.
24 Yilmaz A B, █(〖DehrI〗┴? ), Erbil M. Effects of ammonium chloride salt added to mixing water on concrete and reinforced concrete subject to atmospheric corrosion[J]. Cem Concr Res, 2002, 32 (32):91.
25 Yu Z, Hu W L. Study of corrosion mechanism and behavior of concrete in the industrial atmosphere environment[J]. Concr, 2000, 8:10(in Chinese).
于忠,胡蔚儒. 化工大气环境中混凝土腐蚀机理及性能研究[J]. 混凝土, 2000, 8:10.
26 Karatasios I, Kilikoglou V, Theoulakis P, et al. Sulphate resis-tance of lime-based barium mortars[J]. Cem Concr Compos, 2008, 30(9):815.
27 Lanas J, Sirera R, Alvarezl J I. Study of the mechanical behavior of masonry repair lime-based mortars cured and exposed under diffe-rent conditions[J]. Cem Concr Res, 2006, 36(5):961.
28 Cultrone G, Arizzi A, Sebastian E, et al. Sulfation of calcitic and dolomitic lime mortars in the presence of diesel particulate matter[J]. Environ Geol, 2008, 56(3):741.
29 Zappia G, Sabbioni C, Pauri M G, et al. Mortar damage due to airborne sulfur compounds in a simulation chamber[J]. Mater Struct, 1994, 27(8):469.
30 Elfving P, Panas I, Lindqvist O. Model study of the first steps in the deterioration of calcareous stone Ⅰ. Initial surface sulphite formation on calcite[J]. Appl Surf Sci, 1994, 74(1):91.
31 Elfving P, Panas I, Lindqvist O. Model study of the first steps in the deterioration of calcareous stone Ⅱ. Sulphate formation on calcite[J]. Appl Surf Sci, 2007, 34(78):83.
32 Scholl E, Knofel D. On the effect of SO2 and CO2 on cement paste[J]. Cem Concr Res, 1991, 21(1):127.
33 Izaguirre A. Lanas J, Alvarez J I. Ageing of lime mortars with admixtures: Durability and strength assessment[J]. Cem Concr Res, 2010, 40:1081.
34 Grounds T ,Midgley H G, Novell D V. Carbonation of ettringite by atmospheric carbon dioxide[J]. Thermochim Acta, 1988, 135(88):347.
35 Nishikawa T, Suzuki K, Ito S, et al. Decomposition of synthesized ettringite by carbonation[J]. Cem Concr Res, 1992, 22(1):6.
36 Gabrisova A, Havlica J, Sahu S. Stability of calcium sulphoaluminate hydrates in water solutions with various pH values[J]. Cem Concr Res, 1991, 21(6):1023.
37 Damidot D, Glasser F P. Thermodynamic investigation of the CaO?Al2O3?CaSO4?H2O system at 50 ℃ and 85 ℃[J]. Cem Concr Res, 1992, 22(6):1179.
38 Heinz D, Ludwing U. Delayed ettringite formation in heat treated mortars and concretes[J]. Precast Plant Technol, 1989, 11:56.
39 Yan P Y, Tan X, Yang W Y. Decomposition and delayed formation of ettringite in shrinkage compensating massive concrete[J]. J Chin Cer Soc, 2000, 28(4):319(in Chinese).
阎培渝, 肖覃 ,杨文言. 大体积补偿收缩混凝土中钙矾石的分解与二次生成[J]. 硅酸盐学报, 2000, 28(4):319.
40 莫斯克文 B M,阿列克谢耶夫 C H. 混凝土和钢筋混凝土的腐蚀及其防护方法[M]. 北京:化学工业出版社, 1988.
41 Meng T, Qian K L, Zhan S L. Corrosion mechanism study of concrete structure under the high-temperature high-humidity and corrosiveness surrounding[J]. Constr Technol, 2006:35(4):82(in Chinese).
孟涛,钱匡亮,詹树林. 高温高湿腐蚀环境下混凝土结构腐蚀机制研究[J]. 施工技术, 2006, 35(4):82.
42 Ren H C. Corrosion damage and reinforce remould of underground stovepipe[J]. Ind Constr, 1994(3):9(in Chinese).
任红春. 地下烟道的腐蚀毁坏和加固改造[J]. 工业建筑, 1994(3):9.
43 Jia Y, Chen W H, Xia C T, et al. Anti-corrosion of concrete flue in electron beam scrubber system for flue gas desulfurization[J]. Corros Prot, 2004, 25(5):205(in Chinese).
贾义,陈伟华,夏崇滔,等. 电子束烟气脱硫装置中混凝土烟道的腐蚀防护[J]. 腐蚀与防护, 2004, 25(5):205.
44 Niu J G, Hu W X, Yang P F. Experimental investigation on the influence of sulfur dioxide to concrete performance[J]. Bull Chin Cer Soc, 2016, 35(1):44(in Chinese).
牛建刚,胡伟勋,杨鹏飞. 二氧化硫腐蚀对混凝土性能影响试验研究[J]. 硅酸盐通报, 2016, 35(1):44.
45 Cai G T, Chen J Q. Corrosion mechanism of concrete chimney and development of anti-corrosion coatings[J]. Concrete,1998(4):41(in Chinese).
蔡光汀,陈君球. 混凝土烟囱的腐蚀机理及防腐涂料的研制[J]. 混凝土, 1998(4):41.
46 Martinze-Ramirez S, Puertas F, Blanco-Varela M T, et al. Studies on degradation of lime mortars in atmospheric simulation chambers[J]. Cem Concr Res, 1997, 27(5):777.
47 Tang Z Y, Jin B S, Zhong Z P, et al. An experimental study on the accelerated corrosion of plant chimney in high SO2 concentration[J]. Ind Constr, 2005, 35(s1):710(in Chinese).
唐志永,金保升,仲兆平,等. 电站烟囱混凝土SO2腐蚀模拟研究[J]. 工业建筑, 2005, 35(s1):710.
48 Klimgspor J, Karlsson H T, Bjerle I. A kinetic study of the dry SO2-limestion reaction at low temperature[J]. Chem Eng Commun, 1983, 22(1-2):81.
49 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T9789-2008, 金属和其他无机覆盖层通常凝露条件下的二氧化硫腐蚀试验[S]. 北京:中国标准出版社, 2008.
50 国家轻工业局.QB/T3830-1999, 轻工产品金属镀层和化学处理层的耐腐蚀试验方法二氧化硫试验方法[S]. 北京:国家轻工业局, 1999.
51 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.GB/T50082-2009, 普通混凝土长期性能和耐久性性能试验方法标准[S]. 北京:中国建筑工业出版社,2009.
52 Garea A, Herrear J L, Marques J A, et al. Kinetics of dry flue gas desulfurization at low temperatures using Ca(OH)2: Competitive reactions of sulfation and carbonation[J]. Chem Eng Sci, 2001, 56(4):1387.
53 Odigure J O. Deterioration of long-serving cement-based sandcrete structures in Nigeria[J]. Cem Concr Res, 2002, 32:1451.
[1] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[5] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[6] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[7] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[8] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[9] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[10] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[11] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[12] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[13] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[14] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[15] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed