Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 254-258    https://doi.org/10.11896/j.issn.1005-023X.2018.02.019
  物理   材料研究 |材料 |
环境温湿度对铝合金焊缝气孔和力学性能的影响
乔建毅1,2,王文权1,阮野1,郭成伟3
1 吉林大学材料科学与工程学院,长春 130022
2 中广核研究院有限公司,深圳 518031
3 承德石油高等专科学校,承德 067000
Effects of Temperature and Humidity on Porosity and Mechanical Properties of Aluminum Alloy MIG Joints
Jianyi QIAO1,2,Wenquan WANG1,Ye RUAN1,Chengwei GUO3
1 College of Materials Science and Engineering, Jilin University, Changchun 130022
2 China Nuclear Power Technology Research Institute, Shenzhen 518031
3 Chengde Petroleum College, Chengde 067000
下载:  全 文 ( PDF ) ( 2623KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

对于高速轨道客车铝车身的生产制造,气孔是焊接中最常见的缺陷。采用X射线法研究了不同温度和湿度下铝合金6082和5083熔化极氩弧焊(MIG)焊缝的气孔情况。结果表明,在焊接过程中环境的绝对湿度(是温度和湿度的综合体现)对焊缝的气孔率有重要影响,铝合金6082焊缝的气孔敏感性要比铝合金5083高。在拉伸试验中铝合金6082接头的断裂位置一般在焊接热影响区(HAZ),随着绝对湿度的增加,接头的抗拉强度和断后伸长率几乎保持不变,但接头的正弯和背弯角度分别减小了74.4%和64.4%。铝合金5083接头的断裂位置一般出现在熔合区,随着绝对湿度的增加,接头的抗拉强度和断后伸长率分别减小了4.0%和15.7%,但是弯曲性能变化不大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔建毅
王文权
阮野
郭成伟
关键词:  铝合金  MIG焊  气孔  力学性能    
Abstract: 

Generally speaking, porosity defect is one of the inevitable challenges encountered in the joints of aluminum alloy structures during fabrication of high speed railway vehicles. X-ray inspection was used to investigate the porosity rate of aluminum alloy 6082 joints and 5083 joints welded by metal inert gas arc welding (MIG) under different temperatures and humidity. The results demonstrated that the susceptibility of aluminum alloy 6082 welded joints to porosity was higher than that of 5083 welded joints. The porosity rate in aluminum alloy joints was almost determined by the absolute humidity in the welding environment. During the tensile strength test, the fractures of the welded aluminum alloy 6082 joints were mainly located in the heat affected zone (HAZ). With the increase of the absolute humidity, the tensile strength and elongation of the 6082 joints remained almost stable. However, the front and back bending angles of the joints were reduced by 74.4% and 64.4%, respectively. The fractures of the welded aluminum alloy 5083 joints were mainly located in the fusion zone. With the increase of the absolute humidity, the tensile strength and elongation of the 5083 joints decreased by 4.0% and 15.7%, respectively. Whereas, the bending capacity of the 5083 joints was hardly affected by the humidity variation in the welding environment.

Key words:  aluminum alloys    MIG welding    porosity    mechanical properties
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TG442  
基金资助: 吉林省科技厅基金项目(20150503)
引用本文:    
乔建毅,王文权,阮野,郭成伟. 环境温湿度对铝合金焊缝气孔和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 254-258.
Jianyi QIAO,Wenquan WANG,Ye RUAN,Chengwei GUO. Effects of Temperature and Humidity on Porosity and Mechanical Properties of Aluminum Alloy MIG Joints. Materials Reports, 2018, 32(2): 254-258.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.019  或          http://www.mater-rep.com/CN/Y2018/V32/I2/254
Material Tensile strength
MPa
Elongation
%
Thermal conductivity
(20 ℃)/(W/(m·K))
6082 349.9 9.9 174
5083 310.1 22.8 117
表1  铝合金6082和5083的力学和物理性能
图1  拉伸试样形状及尺寸
图2  弯曲试样形状及尺寸
Temperature/℃ Humidity/% X-ray inspections and image analysis Porosity/%
Aluminum
alloy 6082
10 30 1.43
20 30 1.66
20 50 1.86
20 70 2.19
30 30 1.93
表2  铝合金6082和 5083焊缝的气孔率
Temperature/℃ Humidity/% X-ray inspections and image analysis Porosity/%
Aluminum
alloy 5083
10 30 0.16
20 30 0.19
20 50 0.34
20 70 0.56
30 30 0.41
表2  续
Temperature/℃ 10 20 30
Relative humidity/% 30 30 50 70 30
Saturated humidity
g/m3
9.35 17.30 30.30
Absolute humidity
g/m3
2.81 5.19 8.65 12.32 9.09
表3  不同温度和相对湿度下的绝对湿度
图3  绝对湿度对气孔的影响
图4  焊缝内部氢气孔的形貌
图5  焊缝皮下气孔的显微形貌:(a)铝合金6082焊缝的纵截面;(b)铝合金5083焊缝的纵截面
图6  绝对湿度对铝合金6082接头拉伸性能的影响
图7  绝对湿度对铝合金5083接头拉伸性能的影响
图8  焊接接头断口表面气孔分布:(a)5083接头拉伸断口;(b)6082接头弯曲断口
Absolute
humidity/(g/m3)
Pressure head
diameter/mm
6082 welded joint 5083 welded joint
Front bending
angle/(°)
Back bending
angle/(°)
Front bending
angle/(°)
Back bending
angle/(°)
2.81 30 101 109 180 180
5.19 30 180 180 180 180
8.65 30 54 74 180 180
9.09 30 74 66 180 180
12.32 30 46 64 180 180
表4  绝对湿度对铝合金6082和5083接头弯曲性能的影响
1 1 王元良, 陈辉 . 高速列车铝合金车体的焊接技术[M]. 成都: 西南交通大学出版社, 2012: 12.
2 Lee W B, Yeon Y M, Jung S B . Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy[J]. Materials Science and Technology, 2003,19(11):1513.
3 Gou G, Zhang M, Chen H , et al. Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminum alloy welded joints in high-speed trains[J]. Materials & Design, 2015,85:309.
4 Haboudou A, Peyre P, Vannes A B , et al. Reduction of porosity content generated during Nd∶YAG laser welding of A356 and AA5083 aluminium alloys[J]. Materials Science and Engineering:A, 2003,363(1):40.
5 Pastor M, Zhao H, Martukanitz R P , et al. Porosity, underfill and magnesium loss during continuous wave Nd∶YAG laser welding of thin plates of aluminum alloys 5182 and 5754[J]. Welding Journal, 1999,78(6):207s.
6 Ashton R F, Wesley R P, Dixon C R . The effect of porosity on 5086-H116 aluminum alloy welds[J]. Welding Research, 1975,54(3):95s.
7 Wang J, Wang G Z, Wang C M . Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy[J]. Metalurgija, 2015,54(4):683.
8 Davis J R . ASM specialty handbook: Aluminum and aluminum Alloys[M]. 3rd ed.OH:ASM International, 1993.
9 Liu H I, Li X P, Rui Y N . Monitor on-line and fault diagnosis to high speed centrifugal hydrogen compressors based on the theories of EMD and correlation dimension[J]. Applied Mechanics & Materials, 2010,33:523.
10 J. D.法斯特.刁伟涛,梁新邦译.金属中的气体[M]. 北京: 冶金工业出版社, 1983: 134.
11 11 陈伯蠡. 焊接工程缺欠分析与对策[M]. 北京: 机械工业出版社, 1997: 207.
12 И. К帕豪德涅.焊缝中的气体[M]. 北京: 机械工业出版社, 1977: 197.
13 13 张文钺. 焊接冶金学[M]. 北京: 机械工业出版社, 1999.
14 14 周敏惠, 於美甫 . 焊接缺陷与对策[M]. 上海: 上海科学技术文献出版社, 1989.
15 15 张汉谦. 钢熔焊接头金属学[M]. 北京: 机械工业出版社, 2001.
16 Marioara C D, Andersen S J, Jansen J , et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al-Mg-Si alloy[J]. Acta Materialia, 2003,51(3):789.
17 Qiao Jianyi, Shao Youfa, Ruan Ye , et al. Microstructure and pro-perties of MIG welding joint of aluminum alloy 6082 and 5083[J]. Materials Review B: Research Papers, 2016,30(12):94(in Chinese).
18 乔建毅, 邵有发, 阮野 , 等. 铝合金6082和5083 MIG焊接头的微观组织和性能[J]. 材料导报:研究篇, 2016,30(12):94.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[12] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[13] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[14] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[15] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed