Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 259-262    https://doi.org/10.11896/j.issn.1005-023X.2018.02.020
  物理   材料研究 |材料 |
热轧钢材氧化铁皮的高温形变机理研究
李志峰1,何永全2,曹光明1,汤军舰1,刘振宇1
1 东北大学轧制与连轧自动化国家重点实验室,沈阳 110819
2 郑州航空工业管理学院机电工程学院,郑州 450015
Mechanism Study of High-temperature Deformation of Oxide Scale on Hot-rolled Steel
Zhifeng LI1,Yongquan HE2,Guangming CAO1,Junjian TANG1,Zhenyu LIU1
1 The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2 The School of Mechatronics Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450015
下载:  全 文 ( PDF ) ( 3218KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用热力模拟实验机研究了低碳微合金钢在热变形过程中钢材表面氧化铁皮的高温形变机理,并采用场发射电子探针和电子背散射衍射仪来表征氧化铁皮的厚度、截面形貌、元素分布和晶体结构。结果表明,在高温条件下钢材表面的氧化铁皮具有较好的塑性,氧化铁皮的变形特征与温度和变形量密切相关。此外,塑性变形的位置主要分布在FeO层,这主要是由于FeO的晶体结构为疏松粗大的柱状晶,利于其在高温下发生塑性变形。根据氧化铁皮塑性变形机制合理制定热轧工艺可以使钢材表面的氧化铁皮与钢基体等比例变形,从而达到改善热轧钢材表面质量的目的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志峰
何永全
曹光明
汤军舰
刘振宇
关键词:  氧化铁皮  高温压缩  塑性变形  柱状晶    
Abstract: 

The high-temperature deformation mechanism of oxide scale on low micro-alloy carbon steel was studied using a thermo-mechanical simulator. The thickness, cross-sectional morphology, element distribution and grain structure of oxide scale were observed by electron probe microanalysis (EPMA) and electron backscatter diffraction (EBSD). The results indicated that the plasticity of oxide scale depended on temperature and degree of deformation. Furthermore, FeO layer was the primary region where plastic deformation distributed. This can be explained by the grain structure of FeO layer consisted of loose and larger columnar grains which was beneficial to the plastic deformation. Therefore, the oxide scale and steel substrate at high-temperature developed in equal proportion according to the plastic deformation mechanism of oxide scale, which revealed that the surface quality of hot-rolled steel could be improved by the hot-rolled process.

Key words:  oxide scale    high-temperature compression    plastic deformation    columnar grain
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TG111.5  
基金资助: “十二五”国家科技支撑计划项目(2011BAE13B04);国家自然科学基金(51204047;U1660117)
引用本文:    
李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
Zhifeng LI,Yongquan HE,Guangming CAO,Junjian TANG,Zhenyu LIU. Mechanism Study of High-temperature Deformation of Oxide Scale on Hot-rolled Steel. Materials Reports, 2018, 32(2): 259-262.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.020  或          http://www.mater-rep.com/CN/Y2018/V32/I2/259
图1  加工样品的左视图与剖面图
图2  模拟氧化铁皮热变形行为的实验装置示意图
图3  实验用钢的高温氧化动力学曲线
图4  实验钢恒温氧化1 800 s的断面微观形貌
图5  氧化铁皮厚度随基体形变的变化
图6  实验钢的氧化铁皮在压缩变形后的断面形貌: (a)950 ℃变形30%,(b)950 ℃变形50%
图7  实验钢的氧化铁皮在1 150 ℃压缩50%的断面形貌和元素分布(电子版为彩图)
图8  实验钢的氧化铁皮在不同温度的塑性变形量对比
图9  实验钢在1 050 ℃氧化10 min的氧化铁皮断面结构图
1 Genève D, Rouxel D, Pigeat P , et al. Descaling ability of low-alloy steel wires depending on composition and rolling process[J]. Corrosion Science, 2010,52(4):1155.
2 Chattopadhyay A, Kumar P, Roy D . Study on formation of “easy to remove oxide scale” during mechanical descaling of high carbon wire rods[J]. Surface and Coatings Technology, 2009,203(19):2912.
3 Abuluwefa H T, Guthrie R I L, Ajersch F . Oxidation of low carbon steel in multicomponent gases: Part I. Reaction mechanisms during isothermal oxidation[J]. Metallurgical and Materials Transactions A, 1997,28(8):1633.
4 Zhou C H, Ma H T, Wang L . Effect of compressive stresses on microstructure of scales formed on pure iron during continuous air coo-ling[J]. Journal of Iron and Steel Research International, 2010,17(2):27.
5 Hu X J, Zhang B M, Chen S H , et al. Oxide scale growth on high carbon steel at high temperatures[J]. Journal of Iron and Steel Research International, 2013,20(1):47.
6 Yu X, Jiang Z, Zhao J , et al. Effects of grain boundaries in oxide scale on tribological properties of nanoparticles lubrication[J]. Wear, 2015,333:1286.
7 West G D, Birosca S, Higginson R L . Phase determination and microstructure of oxide scales formed on steel at high temperature[J]. Journal of Microscopy, 2005,217(2):122.
8 Wei D B, Huang J X, Zhang A W , et al. The effect of oxide scale of stainless steels on friction and surface roughness in hot rolling[J]. Wear, 2011,271:2417.
9 Jiang Z Y, Tang J, Sun W , et al. Analysis of tribological feature of the oxide scale in hot strip rolling[J]. Tribology International, 2010,43(8):1339.
10 Basabe V V, Szpunar J A . Growth rate and phase composition of oxide scales during hot rolling of low carbon steel[J]. ISIJ International, 2004,44(9):1554.
11 Hidaka Y, Anraku T, Otsuka N . Deformation of iron oxides upon tensile tests at 600-1 250 ℃[J]. Oxidation of Metals, 2003,59(1):97.
12 Kim B K, Szpunar J A . Orientation imaging microscopy for the study on high temperature oxidation[J]. Scripta Materialia, 2001,44(11):2605.
13 Suárez L, Houbaert Y, Eynde X V , et al. High temperature deformation of oxide scale[J]. Corrosion Science, 2009,51(2):309.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 时博, 王金辉, 魏福安. 金属玻璃自由体积理论的研究概述[J]. 材料导报, 2019, 33(7): 1221-1226.
[3] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[4] 郭炜, 王德, 付远, 陆德平, 刘克明, 王渠东, 张利. 反复锻压剧烈塑性变形的有限元分析*[J]. CLDB, 2017, 31(8): 145-148.
[5] 王俊颜, 边晨, 肖汝诚, 马骉, 刘国平. 常温养护型超高性能混凝土的圆环约束收缩性能*[J]. CLDB, 2017, 31(23): 52-57.
[6] 雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
[7] 张硕, 徐梓真, 张冰, 宋国林, 韩彬, 唐国翌. 高能电脉冲-超声滚压耦合技术对淬火态GCr15钢表面强化研究*[J]. 《材料导报》期刊社, 2017, 31(2): 82-86.
[8] 王锋. 冷喷涂中颗粒形状和温度对其沉积过程的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 138-142.
[9] 章震威, 王军丽, 张清龙, 史庆南. 等通道转角挤压制备超细晶材料的研究与发展[J]. 材料导报, 2017, 31(1): 116-125.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed