Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23120093-6    https://doi.org/10.11896/cldb.23120093
  无机非金属及其复合材料 |
基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究
周传辉1, 王玺朝1, 何国杜1, 董岚1,2,3, 吴子华1,2,3, 谢华清1,2,3, 王元元1,2,3,*
1 上海第二工业大学能源与材料学院,上海 201209
2 上海先进热功能材料工程技术研究中心,上海 201209
3 上海市热物性大数据专业技术服务平台,上海 201209
Study of Photothermal Conversion Performance Based on Highly Stabilized Aqueous Graphene/Bone Gel Nanofluids
ZHOU Chuanhui1, WANG Xichao1, HE Guodu1, DONG Lan1,2,3, WU Zihua1,2,3, XIE Huaqing1,2,3, WANG Yuanyuan1,2,3,*
1 School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
2 Shanghai Engineering Research Center of Advanced Thermal Functional Materials, Shanghai 201209, China
3 Shanghai Thermophysical Properties Big Data Professional Technical Service Platform, Shanghai 201209, China
下载:  全 文 ( PDF ) ( 13786KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在能源危机背景下,能够将太阳能转换成热能的纳米流体光热材料体系脱颖而出。石墨烯纳米流体具有高稳定性的优点,在光热吸收领域具有良好的应用前景,但石墨烯在基液中易团聚,影响其在石墨烯纳米流体中的更广泛应用。本工作利用球磨法制备石墨烯/骨胶纳米复合材料,两步法制备分散稳定的水基石墨烯/骨胶纳米流体。研究了石墨烯与骨胶之间的质量比对石墨烯/骨胶纳米流体稳定性的影响机制,在此基础上进一步探讨了石墨烯/骨胶纳米流体的浓度对其光热吸收性能的影响。结果表明,石墨烯与骨胶质量比为1∶4时,纳米流体具有高稳定性浓度,浓度为0.009%时石墨烯/骨胶纳米流体的光热转换效率达到98.46%,较去离子水提高了24.31%。同时,研究发现石墨烯/骨胶纳米流体能够达到分散稳定状态且具有良好的光热转换性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周传辉
王玺朝
何国杜
董岚
吴子华
谢华清
王元元
关键词:  石墨烯/骨胶纳米流体  分散稳定性  光吸收效果  光热转换效率    
Abstract: In the context of the energy crisis, nanofluid photothermal material systems are particularly noteworthy for their ablility to converse solar energy into heat energy.Among these, graphene nanofluid has a great potential for application in photothermal absorption for its high stability.However, graphene tends to agglomerate in base solutions, which limits its broader utilization in graphene nanofluids.This work employed a ball milling method to prepare graphene/bone glue nanocomposites and a two-step method to produce water-based graphene/bone glue nanofluid.The influence of the mass ratio between graphene and bone glue on the stability of these nanofluids was investigated, along with the relationship between mass fraction and photothermal absorption efficiency.The results demonstrated that with a 1∶4 mass ratio of graphene to bone glue, the nanofluid has high stablility, and at a concentration of 0.009%, the naofluid has an excellent photothermal conversion efficiency of 98.46%, which is 24.31% higher than that of deionized water.These findings highlight that graphene/bone glue nanofluids can achieve stable dispersion states while exhibiting superior performance in terms of photothermal conversion.
Key words:  graphene/bone gel nanofluid    dispersion stability    light absorption effect    photothermal conversion efficiency
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TK519  
基金资助: 国家自然科学基金(52176081);上海市自然科学基金(23ZR1424300);上海市“曙光学者”项目(22SG56);上海市科委地方能力建设项目(22010500700)
通讯作者:  *王元元,博士,上海第二工业大学能源与材料学院教授、硕士研究生导师。主要从事新能源材料与器件能量输运和功率器件热管理的研究。wangyuanyuan@sspu.edu.cn   
作者简介:  周传辉,上海第二工业大学能源与材料学院硕士研究生,在王元元教授的指导下进行研究。目前主要研究领域为新能源材料与器件。
引用本文:    
周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
ZHOU Chuanhui, WANG Xichao, HE Guodu, DONG Lan, WU Zihua, XIE Huaqing, WANG Yuanyuan. Study of Photothermal Conversion Performance Based on Highly Stabilized Aqueous Graphene/Bone Gel Nanofluids. Materials Reports, 2025, 39(3): 23120093-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120093  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23120093
1 Kaufmann R K, Newberry D, Xin C, et al. Nature Energy, 2021, 6(2), 143.
2 Bellos E, Tzivanidis C. Progress in Energy and Combustion Science, 2019, 71, 81.
3 Li D, Wu Y, Zhang G, et al. Applied Energy, 2018, 222, 343.
4 Wu X, Chen G Y, Owens G, et al. Materials Today Energy, 2019, 12, 277.
5 Balakin B V, Stava m, Kosinska A. Solar Energy, 2022, 239, 33.
6 Zeiny A, Jin H, Bai L, et al. Solar Energy, 2018, 161, 74
7 Mehrali M, Ghatkesar M K, Pecnik R. Applied Energy, 2018, 224, 103.
8 Minardi J E, Chuang H N. Solar Energy, 1975, 17(3), 179.
9 Choi S, Eastman J A. ASme Fed, 1995, 231(1), 99.
10 Akram N, Montazer E, Kazi S N, et al. Energy, 2021, 227, 120452.
11 Wiriyasart S, Suksusron P, Hommalee C, et al. Case Studies in Thermal Engineering, 2021, 24, 100877.
12 Subhedar D G, Ramani B M, Gupta A. Case Studies in Thermal Engineering, 2018, 11, 26.
13 Okonkwo E C, Al-ansari T. Scientific Reports, 2021, 11(1), 19227.
14 Shoeibi S, Rahbar N, Abedini Esfahlani A, et al. Sustainable Energy Technologies and Assessments, 2021, 47, 101339.
15 Hassaan A M. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2022, 236(5), 2139.
16 Sajid M U, Ali H M. Renewable and Sustainable Energy Reviews, 2019, 103, 556.
17 Wen J, Li X, Chen W, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 624, 126837.
18 Sundar L S, Singh M K, Sousa A C M. International Communications in Heat and Mass Transfer, 2013, 49, 17.
19 Zhang H, Chen H J, Du X, et al. Solar Energy, 2014, 100, 141.
20 Gimeno-Furió A, Martínez-Cuenca R, Mondragón R, et al. Energy, 2020, 212, 118763.
21 Menbari A, Alemrajabi A A, Rezaei A. Applied Thermal Engineering, 2016, 104, 176.
22 Huang J, Chen Z, Du Z, et al. Thermochimica Acta, 2020, 684, 178487.
23 Zhu W, Zuo X, Ding Y, et al. Applied Thermal Engineering, 2023, 221, 119835.
24 Li Z, Lei H, Kan A, et al. Energy, 2021, 216, 119262.
25 Yang J, Jia Y, Bing N, et al. Applied Thermal Engineering, 2019, 163, 114412.
26 Zhang T X, Wu Z H, S T. Coating Industry, 2019, 49(6), 6(in Chinese).
张天星, 吴智慧, 孙湉. 涂料工业, 2019, 49(6), 63.
27 He Y Z, Liu W W. Chemistry and Adhesion, 2020(4), 42 (in Chinese).
贺一卓, 刘文伟. 化学与黏合, 2020(4), 42.
28 Drotning W D. Solar Energy, 1978, 20(4), 313.
29 Chen L, Xu C, Liu J, et al. Solar Energy, 2017, 148, 17.
30 Ding S Y. Study on the photothermal properties of ZnO nanofluid. Master's Thesis, Shanghai Polytechnic University, China, 2022 (in Chinese).
丁苏莹. ZnO纳米流体光热特性的研究. 硕士学位论文, 上海第二工业大学, 2022.
31 Wang H, Li X, Luo B, et al. Energy, 2021, 227, 120483.
32 Yang L, Ji W, Mao M, et al. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1183.
33 Zhang R, Qu J, Tian M, et al. International Journal of Energy Research, DOI:10. 1002/er. 4028.
34 Mallah a R, Mohd Zubir M N, Alawi O A, et al. Solar Energy Materials and Solar Cells, DOI:10. 1016/j. solmat. 2019. 110084.
35 Zhao Y, Zhang X, Hua W. Journal of Molecular Liquids, 2021, 336, 115923.
36 Meng Z, Li Y, Chen N, et al. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 286.
[1] 李文生, 黄晓龙, 成波, 李建军, 宋强, 赛纽特·乌拉吉米尔. 硅低温热解活化包覆超细金刚石及其抗氧化和分散稳定性[J]. 材料导报, 2023, 37(11): 21120094-6.
[2] 何盈至, 赵谦, 王世荣, 刘红丽, 张天永, 李彬, 李祥高. 双亲型二氧化钛纳米粒子的制备及高稳定非水分散性研究[J]. 材料导报, 2022, 36(20): 21060093-6.
[3] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[4] 马晨雨, 李晓禹, 张绘, 李建强, 赵建玲, 贺刚, 李江涛, 齐涛. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23): 4079-4083.
[5] 周璐, 马红和, 马素霞, 杜慧娟. 用于太阳能集热介质的纳米铜制备技术与铜纳米流体性能综述[J]. 材料导报, 2018, 32(15): 2576-2583.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed