Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23070172-7    https://doi.org/10.11896/cldb.23070172
  无机非金属及其复合材料 |
基于LCA理论的装配式高延性再生微粉混凝土结构碳排放研究
于晓涵1,2, 李秀领1,2,*, 马锐1,2, 孙昊东1,2, 苏振鹏1,2
1 山东建筑大学土木工程学院,济南 250101
2 山东建筑大学建筑结构加固改造与地下空间工程教育部重点实验室,济南 250101
Study on Carbon Emission of Assembled High Ductility Recycled Powder Concrete Structure Based on LCA Theory
YU Xiaohan1,2, LI Xiuling1,2,*, MA Rui1,2, SUN Haodong1,2, SU Zhenpeng1,2
1 School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China
2 Key Laboratory of Building Structure Reinforcement and Underground Space Engineering, Ministry of Education, Shandong Jianzhu University, Jinan 250101, China
下载:  全 文 ( PDF ) ( 3066KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 装配式建筑碳排放与新型绿色建材环境影响评估是研究建筑业减碳路径的重要内容。本工作基于全生命周期评价(Life Cycle Assessment,LCA)理论构建含再生循环过程的装配式建筑碳排放计算模型,提出了符合绿色建材生产方式的环境影响评估公式,并运用排放因子法定量计算高延性再生微粉混凝土(High Ductility Recycled Powder Concrete,HDRPC)结构物化阶段的碳排放以及相较于C30混凝土结构全生命周期的减碳量。经计算得出1 m3的HDRPC与C30混凝土碳排放强度分别为0.104 kgCO2e/(MPa·a)和0.193 kgCO2e/(MPa·a),证明了应用HDRPC相较于C30混凝土具有更好的环境效益;当HDRPC回收率取零时,基于核算案例的HDRPC结构仍可比C30混凝土结构节约31.86 kgCO2e。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于晓涵
李秀领
马锐
孙昊东
苏振鹏
关键词:  装配式建筑  高延性再生微粉混凝土(HDRPC)  碳排放  全生命周期评价(LCA)    
Abstract: The carbon emission of prefabricated buildings and the environmental impact assessment of new green building materials are important aspects of studying the carbon reduction path of the construction industry. Based on the life cycle assessment (LCA) theory, this work constructed a carbon emission calculation model of prefabricated building with regeneration cycle process, and put forward an environmental impact assessment formula conforming to the production mode of green building materials. The emission factor method was used to quantitatively calculate the carbon emission of high ductility recycled powder concrete (HDRPC) structure in the materialization stage, and its carbon reduction in life cycle compared to a C30 concrete structure. Calculated results showed that the carbon emission intensity of 1 m3 HDRPC and C30 concrete was 0.104 kgCO2e/(MPa·a) and 0.193 kgCO2e/(MPa·a), respectively, which proved that the application of HDRPC has better environmental benefits than C30 concrete. Even when the HDRPC recovery rate was zero, the HDRPC structure in this case could still save 31.86 kgCO2e compared to the C30 concrete structure.
Key words:  prefabricated building    high ductility recycled powder concrete (HDRPC)    carbon emissions    life cycle assessment (LCA)
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TU375.4  
基金资助: 国家自然科学基金面上项目(52278507);山东省自然科学基金(ZR2020ME245);山东省重点研发计划(重大科技创新工程)(2021CXGC011204)
通讯作者:  * 李秀领,山东建筑大学土木工程学院教授、博士研究生导师。2000年烟台大学大学建筑工程专业本科毕业,2003年中国地震局工程力学研究所防灾减灾工程及防护工程专业硕士毕业,2006年大连理工大学大学防灾减灾工程及防护工程专业博士毕业后到山东建筑大学工作至今。目前主要绿色高性能建筑材料等方面的研究工作。发表论文80余篇,包括Engineering Structures,Journal of Cleaner Production,Construction and Building Materials,Case Studies in Construction Materials等。Mdlutiem@163.com   
作者简介:  于晓涵,2021年7月于山东交通学院获得工学学士学位。现为山东建筑大学土木工程学院研究生,在李秀领教授的指导下进行研究。目前主要研究领域为再生混凝土研究。2023年获专利授权2项。
引用本文:    
于晓涵, 李秀领, 马锐, 孙昊东, 苏振鹏. 基于LCA理论的装配式高延性再生微粉混凝土结构碳排放研究[J]. 材料导报, 2024, 38(23): 23070172-7.
YU Xiaohan, LI Xiuling, MA Rui, SUN Haodong, SU Zhenpeng. Study on Carbon Emission of Assembled High Ductility Recycled Powder Concrete Structure Based on LCA Theory. Materials Reports, 2024, 38(23): 23070172-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070172  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23070172
1 Chang Y, Li X D, Masanet E, et al. Resources Conservation and Recycling, 2018, 139, 259.
2 China Real Estate Evaluation Center. Research report on green life assessment of low-carbon real estate. China Real Estate Evaluation Center. Beijing, 2010 (in Chinese).
中国房地产评测中心. 低碳地产绿色生活测评研究报告. 中国房地产评测中心. 北京, 2010.
3 Rebitzer G, Ekvall T, Frischknecht R, et al. Environment International, 2004, 30(5), 701.
4 Wang Y. Life-cycle carbon emission model of industrialized prefabricated buildings, Nanjing Southeast University Press, China, 2017, pp.79 (in Chinese).
王玉. 工业化预制装配建筑全生命周期碳排放模型, 南京东南大学出版社, 2017, pp.79.
5 Liu G W, Mao C, Xu P P, et al. List of main materials and parts of the whole industrial chain of industrialized buildings and manual for carbon emission measurement, Chongqing University Press, China, 2020, pp.11 (in Chinese).
刘贵文, 毛超, 徐鹏鹏等. 工业化建筑全产业链主要材料和部品清单及碳排放测算手册, 重庆大学出版社, 2020, pp.11.
6 Wu G, Ou X X, Li D Z, et al. Building carbon emissions calculation, China Building Industry Press, China, 2022, pp.240 (in Chinese).
吴刚, 欧晓星, 李德智等. 建筑碳排放计算, 中国建筑工业出版社, 2022, pp.240.
7 Tang Y, Chen L. In: The 17th Shenyang Science Annual Conference, Shenyang, 2020, pp.1862 (in Chinese).
汤煜, 陈露. 第十七届沈阳科学学术年会, 沈阳, 2020, pp.1862.
8 Xiao J Z. Recycled Aggregate Concrete Structures, 2018, 10.1007/978-3-662-53987-3(Chapter 4), 65.
9 Tang Q, Ma Z M, Wu H X, et al. Cement and Concrete Composites, DOl:10.1016/j.cemconcomp.2020.103807.
10 Thormark C. Building and Environment, 2012(37), 429.
11 Energy Research Institute, National Development and Reform Commission. China 2050 high renewable energy penetration scenario and roadmap study. Beijing, 2015 (in Chinese).
国家发展和改革委员会能源研究所. 中国2050高比例可再生能源发展情景暨路径研究. 北京, 2015.
12 Ma L M, Shi D, Pei Q B. China Population, Resources and Environment, 2018, 28(2), 8 (in Chinese).
马丽梅, 史丹, 裴庆冰. 中国人口·资源与环境, 2018, 28(2), 8.
13 Hong J, Shen G Q, Mao C, et al. Journal of Cleaner Production, 2016, 112, 2198.
14 Song S, Li X L, Wang Z, et al. Case Studies in Construction Materials, 2022, 17, e01546.
15 Li X L, Lv X R, Zhou X T, et al. Journal of Cleaner Production, 2022, 330, 129911.
16 Heede P V D, Belie N D. Cement & Concrete Composites, 2012, 34(4), 431.
17 Ma K L, Meng W Q, Shen J T, et al. Materials Reports, 2023, 38(10), 22100042 (in Chinese).
马昆林, 孟维琦, 申景涛等. 材料导报, 2023, 38(10), 22100042.
18 Luo W J, Ma X C, Meng C Y, et al. IOP Conference Series Earth and Environmental Science, 2020, 531, 012049.
19 Wu B, Li Y. patent, CN202210623496. 2, 2022 (in Chinese).
吴波, 李彦. 专利, CN202210623496. 2, 2022.
20 You D. Construction and Building Materials, 2018, 167(Apr. 10), 414.
21 Gao C Y, Niu J G, Wang F R. Contemporary Economic Management, 2021, 43(8), 33 (in Chinese).
高春艳, 牛建广, 王斐然. 当代经济管理, 2021, 43(8), 33.
22 Huang Z J. Economic and environmental assessment of carbon emissions from demolition waste. Master's Thesis, Guangzhou University, China, 2021 (in Chinese).
黄正杰. 拆除建筑废弃物碳排放经济与环境评估研究. 硕士学位论文, 广州大学, 2021.
23 Gao X, Zhu J J, Chen M, et al. Building Energy Efficiency, 2019, 47(2), 97 (in Chinese).
高鑫, 朱建君, 陈敏等. 建筑节能, 2019, 47(2), 97.
24 Zhao X, Fang S. Journal of Civil and Environmental Engineering, 2012, 34(S2), 4 (in Chinese).
赵昕, 方朔. 土木建筑与环境工程, 2012, 34(S2), 4.
25 Cao J, Shen Z M, Wang X Y, et al. Construction Science and Technology, 2020(Z1), 69 (in Chinese).
曹静, 沈志明, 王晓玉等. 建设科技, 2020(Z1), 69.
26 Cao X, Miao C Q, Pan H T. Building Structure, 2021, 51(S2), 1233 (in Chinese).
曹西, 缪昌铅, 潘海涛. 建筑结构, 2021, 51(S2), 1233.
27 Yu H Y, Wang Q, Zhang H, et al. Coal Ash, 2011, 23(6), 42 (in Chinese).
俞海勇, 王琼, 张贺等. 粉煤灰, 2011, 23(6), 42.
[1] 仪明伟, 肖月, 林翔, 李强, 弋晓明. 沥青路面典型养护施工全过程直接能耗及碳排放量化分析[J]. 材料导报, 2024, 38(20): 23080173-11.
[2] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[3] 杨杨, 凌宏杰, 刘金涛, 卢旭峰. 不同缺陷对装配式建筑钢筋灌浆套筒连接性能的影响[J]. 材料导报, 2023, 37(2): 21070022-7.
[4] 吴国荣, 黄诗雯, 郭跃, 陈旭辉, 宋佳鑫. 面向碳中和的汽车生命周期材料发展与展望[J]. 材料导报, 2023, 37(19): 22090281-8.
[5] 周美洁, 艾立群, 洪陆阔, 孙彩娇, 周玉青, 孟凡峻. 氢冶金基础研究和新工艺探索[J]. 材料导报, 2023, 37(13): 21080052-6.
[6] 王彦静, 刘宇, 崔素萍, 王志宏. 我国建筑陶瓷行业碳排放及减排潜力分析[J]. 材料导报, 2018, 32(22): 3967-3972.
[7] 高思雯, 龚先政, 孙博学. 典型锂电池中间相炭微球负极材料生产的能耗与碳排放分析[J]. 材料导报, 2018, 32(22): 4022-4026.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed