Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23070161-5    https://doi.org/10.11896/cldb.23070161
  高分子与聚合物基复合材料 |
A位缺陷对LaxNiO3+δ在苯酚加氢脱氧反应中催化性能的影响
彭林森1,2, 李凝1,*, 蒋武1, 练彩霞1
1 广东石油化工学院化学工程学院,广东 茂名 525000
2 湘潭大学化学工程学院,湖南 湘潭 411105
Effect of A-site-deficient on the Catalytic Performance of LaxNiO3+δ in Phenol Hydrodeoxygenation Reactions
PENG Linsen1,2, LI Ning1,*, JIANG Wu1, LIAN Caixia1
1 School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
2 School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
下载:  全 文 ( PDF ) ( 7632KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以单分散聚甲基丙烯酸甲酯微球为模板,采用溶胶-凝胶法与水热法相结合分别制备了A位缺陷的系列LaxNiO3+δ(x=1,0.9,0.8,0.7和0.6)钙钛矿氧化物。用XRD、SEM、XPS和H2-TPR等对LaxNiO3+δ的晶相结构、表面形貌、元素价态、比表面积和孔径分布等进行表征,结果表明,A位缺陷程度较低时能形成稳定的钙钛矿结构,随着缺陷程度继续增大,除去钙钛矿结构外,有新相NiO和La2NiO4出现;A位缺陷控制在一定范围内,钙钛矿结构中Ni2+增多,有利于形成氧空位,并能促进B位镍离子的还原,产生高度分散的Ni0物种。LaxNiO3+δ在苯酚的加氢脱氧反应中以直接脱氧反应为主,同时发生部分苯环饱和加氢反应,在常压、350 ℃条件下La0.9NiO3+δ催化剂的单程转化率为25.71%,苯的选择性为94.87%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭林森
李凝
蒋武
练彩霞
关键词:  LaxNiO3  钙钛矿  加氢脱氧  阳离子空位掺杂    
Abstract: Adopting a method combines sol-gel method and hydrothermal method, a series of Lax NiO3+δ (x=1, 0.9, 0.8, 0.7, 0.6) perovskite oxides samples with A-site defects were prepared by using monodisperse poly(methyl methacrylate) microspheres as templates respectively. The crystalline phase structure, surface morphology, elemental valence, specific surface area and pore size distribution of them were characterised by XRD, SEM, XPS and H2-TPR, etc. The results showed that a low level of A-site defects could form stable perovskites, and as the level of defects increased, the perovskites were removed with the appearance of new phases NiO and La2NiO4. By controlling the A-site defects within a certain range, the increase of Ni2+ in the perovskite structure is conducive to the formation of oxygen vacancies and can promote the reduction of nickel ions in the B-site to produce highly dispersed Ni0 species. The hydrodeoxygenation reaction of LaxNiO3+δ to phenol is mainly direct deoxygenation reaction. At atmospheric pressure and 350 ℃, the one-way conversion of La0.9NiO3+δ catalyst was 25.71%, and the benzene selectivity was 94.87%.
Key words:  LaxNiO3    perovskite oxide    hydrodeoxygenation    cation deficiency
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  O614  
基金资助: 广东省基础研究及应用研究重大项目(2017KZDXM057);广东省教育厅特色创新项目(2019KTSCX104)
通讯作者:  * 李凝,广东石油化工学院化学工程学院教授、博士研究生导师。1994年湘潭大学化学工程专业本科毕业,2002年湘潭大学化学工程专业硕士毕业,2006年南昌大学工业催化专业博士毕业。2012年到广东石油化工学院工作至今。主持国家和省部级项目10余项,发表学术论文150余篇,目前主要从事催化新材料与多相催化和绿色能源化工技术等方面的研究工作。985882939@qq.com   
作者简介:  彭林森,2021年6月于广东石油化工学院获得工学学士学位。现为湘潭大学化学工程学院硕士研究生,在李凝、吴剑教授的指导下进行研究。目前主要研究领域为催化材料与多相催化。
引用本文:    
彭林森, 李凝, 蒋武, 练彩霞. A位缺陷对LaxNiO3+δ在苯酚加氢脱氧反应中催化性能的影响[J]. 材料导报, 2024, 38(23): 23070161-5.
PENG Linsen, LI Ning, JIANG Wu, LIAN Caixia. Effect of A-site-deficient on the Catalytic Performance of LaxNiO3+δ in Phenol Hydrodeoxygenation Reactions. Materials Reports, 2024, 38(23): 23070161-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070161  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23070161
1 Amjith L R, Bavanish B. Chemosphere, 2022, 293, 8.
2 Zhang J H, Sun J M, Wang Y. Green Chemistry, 2020, 22(4), 1072.
3 Qu L, Jiang X, Zhang Z H, et al. Green Chemistry, 2021, 23(23), 9348.
4 Lian C X, Li N, Jiang W, et al. Chemical Industry and Engineering Progress, 2020, 39(S1), 153 (in Chinese).
练彩霞, 李凝, 蒋武, 等. 化工进展, 2020, 39(S1), 153.
5 Ong H C, Chen W H, Farooq A, et al. Renewable & Sustainable Energy Reviews, 2019, 113.
6 Wang X C, Arai M, Wu Q F, et al. Green Chemistry, 2020, 22(23), 8140.
7 Prasomsri T, Shetty M, Murugappan K, et al. Energy and Environmental Science, 2014, 7, 2660.
8 Cheah Y W, Salam M A, Sebastian J, et al. Journal of Environmental Chemical Engineering, 2023, 11(3), 109614.
9 Mortensen P M, Gardini D, Damsgaard C D, et al. Applied Catalysis A: General, 2016, 523, 159.
10 Che W, Wei M R, Sang Z S, et al. Journal of Alloys and Compounds, 2018, 731, 381.
11 Arandiyan H, Wang Y, Sun H Y, et al. Chemical Communications, 2018, 54(50), 6484.
12 Xiao P, Zhu J, Zhao D, et al. ACS Applied Materials & Interfaces, 2019, 11(17), 15517.
13 Wu M D, Chen S Y, Xiang W G. Chemical Engineering Journal, 2020, 387, 12.
14 Papargyriou D, Miller D N, Irvine J T S. Journal of Materials Chemistry A, 2019, 7(26), 15812.
15 Zheng Y, Zhang R, Zhang L, et al. Angewandte Chemie, 2021, 133(9), 4824.
16 Chen H J, Lim C, Zhou M Z, et al. Advanced Science, 2021, 11(11), 2003799.
17 Wu X, Miao H, Hu R, et al. Applied Surface Science, 2021, 536, 147806.
18 Escalona N, Aranzaez W, Leiva K, et al. Applied Catalysis A: General, 2014, 481, 1.
19 Shetty M, Zanchet D, Green W H, et al. ChemSusChem, 2019, 12(10), 2171.
20 Chen J H, Shen M Q, Wang X Q, et al. Applied Catalysis B-Environmental, 2013, 134, 251.
21 Li C C. Preparation of 3DOM metal oxides and itseffect on thermal decomposition propertiesof energetic materials. Master's Thesis, Northwest University, China, 2021 (in Chinese).
李翠翠. 3DOM金属氧化物的制备及对含能材料热分解性能的影响. 硕士学位论文, 西北大学, 2021.
22 Jiang W, Li N, Lian C X, et al. Chemical Research and Application, 2022, 34(10), 2416. (in Chinese).
蒋武, 李凝, 练彩霞, 等. 化学研究与应用, 2022, 34(10), 2416.
23 Marinho A L A, Rabelo-Neto R C, Noronha F B, et al. Applied Catalysis A: General, 2016, 520, 53.
24 Dai X P, Yu C C. Journal of Molecular Catalysis, 2012, 26(5), 423. (in Chinese).
代小平, 余长春. 分子催化, 2012, 26(5), 423.
25 Delmastro A, Mazza D, Ronchetti S, et al. Materials Science and Engineering: B, 2001, 79(2), 140.
26 Voorhoeve R J H, Johnson D W, Remeika J P, et al. Science, 1977, 195(4281), 827.
27 Yang Q H. Photocatalytic oxidation and reduction activity of nano-perovskite ABO3 oxidess. Ph. D. Thesis, Tianjin University, China, 2003 (in Chinese).
杨秋华. 纳米钙钛矿型ABO3复合氧化物的光催化氧化还原活性. 博士学位论文, 天津大学, 2003.
28 Spinicci R, Tofanari A, Delmastro A, et al. Materials Chemistry and Physics, 2002, 76(1), 20.
29 Shi X, Guo J, Shen T, et al. Chemical Engineering Journal, 2021, 421, 129995.
30 Pal N, Paul M, Bhaumik A. Applied Catalysis A: General, 2011, 393(1), 153.
31 Wang Z, You Y, Yuan J, et al. ACS Applied Materials & Interfaces, 2016, 8(10), 6520.
32 Chen H J, Lim C, Zhou M Z, et al. Advanced Science, 2021, 8(22), 2102713.
33 Choi S, Penninger M, Kim C H, et al. ACS Catalysis, 2013, 3, 2719.
34 Barr T L. The Journal of Physical Chemistry, 1978, 82(16), 1801.
35 Barr T L, Seal S, He H, et al. Vacuum, 1995, 46(12), 1391.
36 Deng J, Zhang L, Dai H, et al. Industrial & Engineering Chemistry Research, 2008, 47(21), 8175.
37 Xu Y. Synthesis of metal composite oxides and their applications in environmental catalysis. Ph. D. Thesis, Wuhan University, China, 2021 (in Chinese).
徐银. 金属复合氧化物的制备及其在环境催化中的应用. 博士学位论文, 武汉大学, 2019.
38 Hammami R, Batis N H, Batis H, et al. Solid State Sciences, 2009, 11(4), 885.
39 Mao L, Yan Y Y, Zhao X T, et al. Catalysis Letters, 2019, 149(4), 1087.
40 Pereñiguez R, Gonzalez-Delacruz V M, Caballero A, et al. Applied Catalysis B: Environmental, 2012, 123-124, 324.
41 Ai L, Shi Y T, Han Y J, et al. Reaction Kinetics Mechanisms and Catalysis, 2021, 133(1), 209.
42 Yang F, Liu D, Zhao Y, et al. ACS Catalysis, 2018, 8(3), 1672.
43 Rong S P, Li K Z, Zhang P Y, et al. Catalysis Science & Technology, 2018, 8(7), 1799.
[1] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[2] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[3] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[4] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[5] 何永才, 丁蕾, 杨莹, 刘江, 何博, 张永哲, 严辉, 徐希翔. 基于丁二胺盐酸盐钝化的高效钙钛矿/晶硅叠层电池[J]. 材料导报, 2024, 38(20): 23070073-4.
[6] 孙元杰, 李志刚, 王艺, 田波, 李金凤, 张楠, 赵浚峰, 张建伟, 李拓, 赵弘韬. 金属卤化物钙钛矿纳米晶体/聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23040056-10.
[7] 高华兴, 张红旗, 李璇. 准二维钙钛矿中结晶调控与低阈值微纳激光器[J]. 材料导报, 2024, 38(12): 22110309-5.
[8] 梁梦标, 陈婷, 秦喆, 谢志翔, 徐彦乔, 温鹏, 林坚, 郭春显. 全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展[J]. 材料导报, 2024, 38(11): 22120172-11.
[9] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[10] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[11] 魏宇, 姜丰, 张雯. 钙钛矿基气敏传感材料研究进展[J]. 材料导报, 2023, 37(9): 21060043-9.
[12] 楚丙凯, 刘璐璐, 郝继功, 李伟, 曾华荣. BNT基铁电陶瓷的温度诱导高电致应变响应及其机理研究[J]. 材料导报, 2023, 37(7): 21100234-6.
[13] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[14] 余海燕, 许方贤, 张帅, 袁宁一, 丁建宁. 一种低温退火处理提高锡基钙钛矿太阳能电池效率的方法[J]. 材料导报, 2023, 37(23): 23020020-5.
[15] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed