Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23070258-8    https://doi.org/10.11896/cldb.23070258
  无机非金属及其复合材料 |
电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响
陈文龙1, 周旭东2, 张宇1,*, 张云升1, 马智聪1
1 兰州理工大学土木工程学院,兰州 730050
2 广东省公路建设有限公司,广州 510000
Effect of Electrochemically Chlorine Extraction on the Corrosion State of Steel Bars and the Microstructure of Surrounding Concrete
CHEN Wenlong1, ZHOU Xudong2, ZHANG Yu1,*, ZHANG Yunsheng1, MA Zhicong1
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Guangdong Highway Construction Co.,Ltd., Guangzhou 510000, China
下载:  全 文 ( PDF ) ( 15609KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作分别采用1 A/m2、2 A/m2和3 A/m2的电流密度对不同水灰比(0.47、0.38、0.33)掺盐混凝土进行30 d电化学除氯(ECE)修复,以钢筋腐蚀状态、除氯效率及残余氯离子浓度分布为指标,评价ECE修复效果,并结合扫描电镜(SEM)、X射线衍射(XRD)及核磁共振(NMR)测试方法,探究ECE处理前后混凝土水化产物、孔结构演变规律。结果表明:ECE处理可以阻止钢筋锈蚀或恢复钝化;水灰比增大、电流密度增加,ECE效率显著提升;ECE处理后,混凝土中Ca(OH)2含量增加,且Ca(OH)2晶体能有效填充孔隙,使靠近阳极处的混凝土密实度增大、孔隙率降低,而靠近阴极处混凝土中的水化产物被迫分解造成孔隙疏松。ECE处理后阴极处混凝土内微孔(0.001~0.1 μm)向介孔(0.1~1 μm)演变,对钢筋-混凝土粘结性能产生不利影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈文龙
周旭东
张宇
张云升
马智聪
关键词:  电化学除氯  钢筋混凝土  氯离子浓度分布  核磁共振  线性极化法    
Abstract: In this work, using the current densities of 1 A/m2, 2 A/m2 and 3 A/m2 to carry out electrochemical chlorine extraction (ECE) treatment for 30 days on concrete with different water-cement ratios (0.47, 0.38, 0.33), the corrosion state of steel bars, chlorine extraction efficiency and residual chloride concentration distribution were obtained to evaluate the effect of ECE treatment. Througth scanning electron microscopy, X-ray diffraction and nuclear magnetic resonance test methods, explored the evolution rule of concrete hydration products and pore structure before and after ECE treatment. The results show that ECE treatment can prevent steel corrosion or restore passivation. The increase of the water-cement ratio and the current density would significantly increase the chlorine extraction efficiency of ECE. After ECE treatment, the content of Ca(OH)2 in concrete increased, and Ca(OH)2 crystals could fill the pores, so that the density of concrete near the anode increased and the porosity reduced, while the hydration products in concrete near the cathode were decomposed, resulting in porosity. After ECE treatment, the micropores (0.001—0.1 μm) in the concrete at the cathode evolved into mesopores (0.1—1 μm), which was unfavorable to the bond performance of steel-concrete.
Key words:  electrochemical chlorine extraction    reinforced concrete    chloride ion concentration distribution    nuclear magnetic resonance    linear polarization
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52208249;U21A20150;52208292); 甘肃省青年科学基金(22JR5RA288); 甘肃省高等学校自然科学创新基金(2022CYZC-25); 甘肃省绿色智慧公路关键技术示范项目(21ZD3GA002); 公路混凝土桥梁耐久性关键技术,高性能土木工程材料国家重点实验室(2022CEM009)
通讯作者:  * 张宇,兰州理工大学土木工程学院讲师,红柳优青,硕士研究生导师,2021年东南大学材料科学与工程学院毕业,获工学博士学位。固废冶金渣学术委员,中国硅酸盐学会会员,主要研究方向为机制砂混凝土、3D打印混凝土、固废资源化利用。参与编制国家/行业/团体标准3项;主持及参与国家、省部级项目6项;获国家授权发明专利4项,在CCC、CBM、《硅酸盐学报》等国内外学术期刊发表SCI/EI论文20余篇,获Materials and Structures 2021年度杰出论文奖。yzhang20210036@163.com   
作者简介:  陈文龙,2021年6月毕业于山东理工大学,并获得工学学士学位。现为兰州理工大学土木工程学院在读研究生。目前主要研究领域为混凝土桥梁耐久性修复。
引用本文:    
陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
CHEN Wenlong, ZHOU Xudong, ZHANG Yu, ZHANG Yunsheng, MA Zhicong. Effect of Electrochemically Chlorine Extraction on the Corrosion State of Steel Bars and the Microstructure of Surrounding Concrete. Materials Reports, 2024, 38(23): 23070258-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070258  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23070258
1 Li Z, Jin Z Q, Shao S S, et al. Materials Reports, 2018, 32(23), 4170 (in Chinese).
李哲, 金祖权, 邵爽爽, 等. 材料导报, 2018, 32(23), 4170.
2 Liu C X. Corrosion law of steel bars in concrete under chloride ion erosion and time-varying reliability analysis of reinforced concrete structures. Ph. D. Thesis, Tianjin University, China, 2020 (in Chinese)
刘晨曦. 氯离子侵蚀下混凝土中钢筋锈蚀规律及钢筋混凝土结构时变可靠度分析. 博士学位论文, 天津大学, 2020.
3 Xia J, Li T, Fang J X, et al. Construction and Building Materials, 2019, 228, 116745.
4 Zhao H. Journal of Coastal Research, 2020, 110(S1), 266.
5 James A, Ehsan B, Alireza A C, et al. Construction and Building Materials, 2019, 224, 1026.
6 Guo Q, Li X Z, Song Y L, et al. Journal of Building Materials, 2023, 26(1), 21 (in Chinese).
郭群, 李晓珍, 宋屹林, 等. 建筑材料学报, 2023, 26(1), 21.
7 Das J K, Pradhan B. Journal of Building Engineering, 2022, 50, 104192.
8 Li Z, Li N, Zhao T J, et al. Construction and Building Materials, 2023, 369, 130617.
9 Szweda Zofia. Materials, 2023, 16(2), 666.
10 Tissier Y, Bouteiller V, Victoire E, et al. Electrochimica Acta, 2019, 317, 486.
11 Nguyen H Y T, Pansuk W, Sancharoen P, et al. KSCE Journal of Civil Engineering, 2018, 22 (8), 2942.
12 Lin H, Li Y, Li Y Q. Construction and Building Materials, 2019, 197, 228.
13 Shen E B, Fang D J, Wang Y P, et al. In: International Conference on Mechatronics Engineering and Computing Technology (ICMECT). Shanghai, 2014, pp.663.
14 de Almeida Souza L R, de Medeiros M H F, Pereira E, et al. Construction and Building Materials, 2017, 145, 435.
15 Ding Z, Xing F, Li W H. Journal of Wuhan University of Technology, 2009, 31(7), 19 (in Chinese).
丁铸, 邢锋, 李伟华. 武汉理工大学学报, 2009, 31(7), 19.
16 Fan W J, Wu Y T, Mao J H, et al. Chinese Journal of Engineering, 2021, 43(6), 778 (in Chinese).
樊玮洁, 吴云涛, 毛江鸿, 等. 工程科学学报, 2021, 43(6), 778.
17 He R, Wang T. China Journal of Highway and Transport, 2020, 33(7), 29 (in Chinese).
何锐, 王铜. 中国公路学报, 2020, 33(7), 29.
18 Zhang H L, Wang S L, Yuan X S. Chinese Journal of Materials Science and Engineering, 2022, 40(1), 40 (in Chinese).
张海龙, 王社良, 袁晓洒. 材料科学与工程学报, 2022, 40(1), 40.
19 Jin W L, Guo Z, Xu C. Journal of Chinese Society for Corrosion and Protection, 2013, 33(1), 75 (in Chinese).
金伟良, 郭柱, 许晨. 中国腐蚀与防护学报, 2013, 33(1), 75.
20 Stern M, Geary A L. Journal of the Electrochemical Society, 1957, 10(4), 56.
21 Andrade C, Alonso C. Construction Building Materials, 1996, 10(5), 315.
22 Yang J. Journal of Yangtze River Scientific Research Institute, 2020, 37(4), 127 (in Chinese).
杨晶. 长江科学院院报, 2020, 37(4), 127.
23 Wei Y M, Chai J R, Qin Y, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(3), 825 (in Chinese).
魏毅萌, 柴军瑞, 覃源, 等. 硅酸盐通报, 2018, 37(3), 825.
24 Li C J, Sun Z P, Li Q, et al. Materials Reports, 2016, 30(13), 133 (in Chinese).
李春景, 孙振平, 李奇, 等. 材料导报, 2016, 30(13), 133.
25 Arya C, Newman J B. Materials and Structures, 1990, 23(5), 319.
26 Mohammed T U, Hamada H. Cement and Concrete Research, 2003, 33(9), 1487.
27 Xu G, Wen T, Wang Q, et al. Industrial Construction, 2014, 44(6), 73(in Chinese).
徐港, 温婷, 王青, 等. 工业建筑, 2014, 44(6), 73.
28 Yu L B, Jiang L H, Chu H Q, et al. Science Technology and Engineering, 2020, 20(9), 3387 (in Chinese).
于丽波, 蒋林华, 储洪强, 等. 科学技术与工程, 2020, 20(9), 3387.
29 Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. ASTM Standards, 2009, pp.6.
30 Wang W Z, Zheng X M, Liu X D, et al. Concrete, 2011(3), 28 (in Chinese).
王文仲, 郑秀梅, 刘晓丹, 等. 混凝土, 2011(3), 28.
31 Sun W B, Gao X J, Yang Y Z, et al. Journal of Harbin Engineering University, 2009, 30(10), 1108 (in Chinese).
孙文博, 高小建, 杨英姿, 等. 哈尔滨工程大学学报, 2009, 30(10), 1108.
32 Deng X H, Gao X Y, Wang R, et al. Materials Reports, 2021, 35(16), 16028 (in Chinese).
邓祥辉, 高晓悦, 王睿, 等. 材料导报, 2021, 35(16), 16028.
33 Xue W P, Liu X Y, Yao Z S, et al. AMCS, 2020, 37(9), 2285 (in Chinese).
薛维培, 刘晓媛, 姚直书, 等. 复合材料学报, 2020, 37(9), 2285.
34 Zhang E F, Yang G S, Liu H. Coal Engineering, 2018, 50(10), 50 (in Chinese).
张二锋, 杨更社, 刘慧. 煤炭工程, 2018, 50(10), 50.
[1] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[2] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[3] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[4] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[5] 魏广帅, 汪维, 杨建超, 高伟亮. POZD涂覆钢板加固钢筋混凝土板抗爆性能研究[J]. 材料导报, 2023, 37(21): 22030007-8.
[6] 孟祥晖, 冯琼, 张云升, 乔宏霞, 谢晓扬. 盐渍土环境下钢筋混凝土腐蚀劣化行为及竞争失效分析[J]. 材料导报, 2023, 37(14): 22010281-10.
[7] 卢喆, 姚文娟, 王社良, 王善伟, 刘博. 复掺天然植物油与青麻纤维对古建筑修复灰浆抗盐冻性能的影响[J]. 材料导报, 2023, 37(12): 22010153-9.
[8] 商怀帅, 柴鑫. 往复荷载下锈蚀钢筋与混凝土粘结性能的试验研究[J]. 材料导报, 2023, 37(1): 21030106-6.
[9] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[10] 乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究[J]. 材料导报, 2022, 36(19): 21010008-6.
[11] 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 20100075-9.
[12] 鞠学莉, 吴林键, 刘明维, 张洪, 李婷婷. 考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J]. 材料导报, 2021, 35(24): 24075-24080.
[13] 邓祥辉, 高晓悦, 王睿, 赵崇基. 再生混凝土抗冻性能试验研究及孔隙分布变化分析[J]. 材料导报, 2021, 35(16): 16028-16034.
[14] 路承功, 魏智强, 乔宏霞, 曹辉, 乔国斌. 盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究[J]. 材料导报, 2021, 35(16): 16042-16049.
[15] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed