Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23070239-10    https://doi.org/10.11896/cldb.23070239
  金属与金属基复合材料 |
表面自纳米化医用金属材料的研究进展
邱靖1,2, 胡剑1,2,*, 陈绵1,2, 衣玉玮1,2
1 华东交通大学材料科学与工程学院,南昌 330013
2 华东交通大学江西省纳米生物材料重点实验室,南昌 330013
Research Progress on Surface Self-nanocrystallization for Medical Metal Materials
QIU Jing1,2, HU Jian1,2,*, CHEN Mian1,2, YI Yuwei1,2
1 School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
2 Jiangxi Key Laboratory of Nanobiomaterials, East China Jiaotong University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 23560KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 医用金属材料的表面性能至关重要,微观结构、晶粒尺寸、表面粗糙度及残余应力等是显著影响材料服役性能的重要因素。表面自纳米化产生的剧烈塑性变形能够在医用金属材料表面形成梯度纳米结构层和残余压应力,因此是改善材料表面力学性能和生物相容性的有效手段。本文首先综述了几种典型的表面自纳米化方法及其在医用金属领域的研究进展,并分析其各自的适用范围和存在的主要问题。其次总结了医用金属材料表面纳米晶层的微观结构演化规律与晶粒细化机制,重点阐述了表面自纳米化方法对医用金属材料的力学性能、耐蚀性以及生物学性能变化的影响。最后指出了现有医用金属材料表面自纳米化研究存在的不足,并对表面自纳米化医用金属材料的未来研究方向及应用前景进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱靖
胡剑
陈绵
衣玉玮
关键词:  表面自纳米化  医用金属材料  力学性能  耐蚀性  生物相容性    
Abstract: Most properties of medical metal materials are to a large extent influenced by their surface characteristics. The microstructure, grain size, surface roughness and residual stress are significant factors that obviously affect the service performance of materials. In order to enhance the wear resistance, corrosion resistance and osseointegration of medical metal materials, it is necessary to modify the surface characteristics. Among these current surface modification methods, surface self-nanocrystallization (SSNC) is a promising technology for its' synergistic effect of residual compressive stress, high hardness, and surface grain refinement generated during SSNC process, which should enhance the resistance of materials to wear and fatigue crack initiation, and improve the biological activity. This paper first outlines several typical SSNC technologies and their research progress in the field of medical metals, and analyzes their respective application ranges and main problems. It then summarizes the microstructure evolution law and grain refinement mechanism of nanocrystalline layer on the surface of medical metal materials in which the effects of SSNC parameters on the mechanical properties, corrosion resistance and biological properties of medical metal materials are emphasized. It finally points out the deficiencies in the existing research on SSNC of medical metal materials, and envisages the future research and application in this field.
Key words:  surface self-nanocrystallization    medical metal materials    mechanical properties    corrosion resistance    biological activity
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TG146  
  TG142.71  
基金资助: 国家自然科学基金(51961012,52001122);江西省自然科学基金(20212ACB214001,20203BBE53050,20224BAB214014)
通讯作者:  * 胡剑,博士,教授,博士生导师,江西省青科协副会长,中青科协会员,中国生物材料学会复合材料分会常务委员。博士毕业于中国科学院金属研究所,以第一/通讯作者在《Science》等国际著名学术期刊发表SCI论文10余篇。近五年主持国家自然科学基金项目2项,省部级项目3项;获发明专利授权7项;入选江西省双千计划人才、江西省青年井冈学者、江西省杰出青年人才、赣江新区赣江海智计划人才、华东交大天佑杰出人才,荣获江西青年五四奖章等,现主要从事金属材料强韧化的多尺度结构设计与制备、医用抗菌金属及高熵合金的结构设计及微观结构调控、高强高导铜合金等相关研究。hu@ecjtu.edu.cn   
作者简介:  邱靖,2020年6月毕业于华东交通大学,获工学硕士学位。现为华东交通大学材料科学与工程学院助理实验师。目前主要研究领域为纳米金属材料的多尺度结构设计与制备。
引用本文:    
邱靖, 胡剑, 陈绵, 衣玉玮. 表面自纳米化医用金属材料的研究进展[J]. 材料导报, 2024, 38(23): 23070239-10.
QIU Jing, HU Jian, CHEN Mian, YI Yuwei. Research Progress on Surface Self-nanocrystallization for Medical Metal Materials. Materials Reports, 2024, 38(23): 23070239-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070239  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23070239
1 Koons G L, Diba M, Mikos A G. Nature Reviews Materials, 2020, 5, 584.
2 Kumar S, Nehra M, Kedia D, et al. Materials Science and Engineering: C, 2020, 106, 110154.
3 Ren C, Luo J M, Chen Y H, et al. Materials Reports B:Research Papers, 2020, 34(18), 18081 (in Chinese).
任超, 罗军明, 陈宇海, 等. 材料导报, 2020, 34(18), 18081.
4 The State Bureau of Technology Supervision, The general technological conditions of surgical metal implant. China Standards Press, 1990(in Chinese).
国家技术监督局, 外科金属植入物通用技术条件. 中国标准出版社, 1990.
5 Kunická L, Kocich R, Lowe T C. Progress in Materials Science, 2017, 88, 232.
6 Zheng Y F, Wu Y H. Acta Metallurgica Sinica, 2017, 53(3), 257 (in Chinese).
郑玉峰, 吴远浩. 金属学报, 2017, 53(3), 257.
7 Basova T V, Vikulova E S, Dorovskikh S I, et al. Materials & Design, 2021, 204, 109672.
8 Montazerian M, Hosseinzadeh F, Migneco C, et al. Ceramics International,2022, 48(7), 8987.
9 Chen M, Wang X Q, Zhang E L, et al. Rare Metals, 2022, 41(2), 689.
10 Zhang E L, Zhao X T, Hu J L, et al. Bioactive Materials, 2021, 6(8), 2569.
11 Bagherifard S, Hickey D J, Fintová S, et al. Acta Biomaterialia, 2018, 66, 93.
12 Li H F, Wang P Y, Wen C. Nanomaterials, 2022, 12(12), 2111.
13 Lu K, Lv J. Journal of Materials Science Technology, 1999, 15, 193.
14 Demangel C, Poznanski A, Steenhout V, et al. Advanced Materials Research, 2014, 966, 435.
15 Bahl S, Aleti B T, Suwas S, et al. Materials & Design, 2018, 144, 169.
16 Fu T L, Wang X, Liu J X, et al. JOM, 2017, 69(10), 1844.
17 Huang R, Zhang L, Huang L, et al. Materials Science and Engineering: C, 2019, 97, 688.
18 Sun Y. Tribology International, 2013, 57, 67.
19 Maleki E, Maleki N, Fattahi A, et al. Surface and Coatings Technology, 2021, 405, 126729.
20 Duan M, Luo L, Liu Y. Journal of Alloys and Compounds, 2020, 823, 153691.
21 Huang H W, Wang Z B, Lv J, et al. Acta Materialia, 2015, 87, 150.
22 Lei Y B, Wang Z B, Zhang B, et al. Acta Materialia, 2021, 208, 116773.
23 Carneiro L, Wang X G, Jiang Y Y. International Journal of Fatigue, 2020, 134, 105469.
24 Wang Q, Ren J, Wang Y, et al. Materials Science and Engineering: A, 2019, 754, 121.
25 Zhang W, Zhao M C, Wang Z B, et al. Journal of Magnesium and Alloys, 2023, 11(8), 2776.
26 Wang Z W, Yan Y, Qiao L J. Journal of Materials Science, 2020, 55(27), 13351.
27 Wang Z W, Yan Y, Qiao L J. Colloids and Surfaces B: Biointerfaces, 2017, 156, 62.
28 Kumar S, Chattopadhyay K, Singh V. Journal of Alloys and Compounds, 2017, 724, 187.
29 Kumar S, Chattopadhyay K, Singh V. Materials Characterization, 2016, 121, 23.
30 Zhu L H, Guan Y J, Wang Y J, et al. Surface and Coatings Technology, 2017, 317, 38.
31 Tevlek A, Aydin H M, Maleki E, et al. Surface and Coatings Technology, 2019, 366, 204.
32 Wang C Y, Luo K Y, Wang J, et al. International Journal of Plasticity, 2022, 150, 103191.
33 Wang H, Keller S, Chang Y L, et al. Journal of Alloys and Compounds, 2022, 896, 163011.
34 Mironov S, Ozerov M, Kalinenko A, et al. Journal of Alloys and Compounds, 2022, 900, 163383.
35 Ge M Z, Xiang J Y, Tang Y, et al. Surface and Coatings Technology, 2018, 337, 501.
36 John M, Ralls A M, Kuruveri U B, et al. Metals, 2023, 13(2), 397.
37 Wang Y P, Li Y, Sun K N. Journal of Materials Processing Technology, 2018, 252, 159.
38 Qiu J, Pan T, Peng M X, et al. ACS Applied Bio Materials, 2021, 4, 3524.
39 Liu Q, Li Y X, Qiu J, et al. Rare Metals, 2021, 41, 621.
40 Chen M, Wang X, Hou X, et al. Surface and Coatings Technology, 2023, 465, 129609.
41 Lu K, Lu J. Materials Science and Engineering: A, 2004, 375, 38.
42 Zhou L C, He W F, Luo S H, et al. Journal of Alloys and Compounds, 2016, 655, 66.
43 Lu J Z, Wu L J, Sun G F, et al. Acta Materialia, 2017, 127, 252.
44 Baek S M, Choi I Y, Moon J H, et al. Materialia, 2020, 12, 100821.
45 Jin L, Cui W F, Song X, et al. Applied Surface Science, 2015, 347, 553.
46 Zhou L C, Li Y H, He W F, et al. Materials Science and Engineering: A, 2013, 578, 181.
47 Li H M, Liu Y G, Li M Q, et al. Applied Surface Science, 2015, 357, 197.
48 Nkonta D T, Drevet R, Fauré J, et al. Microscopy Research and Technique, 2021, 84(2), 238.
49 Amanov A, Cho I S, Kim D E, et al. Surface and Coatings Technology, 2012, 207, 135.
50 Kheradmandfard M, Kashani-Bozorg S F, Lee J S, et al. Journal of Alloys and Compounds, 2018, 762, 941.
51 Ye H, Sun X, Liu Y, et al. Surface and Coatings Technology, 2019, 372, 288.
52 Liu H, Jiang C, Chen M, et al. Materials Characterization, 2019, 158, 109952.
53 Kong M, Zang T, Wang Z S, et al. Journal of Materials Research and Technology, 2023, 27, 1223.
54 Mattei L, Di Puccio F. Tribology International, 2023, 187, 108768.
55 Luo X K, Zhao C L, Zha X H, et al. Materials Reports B:Research Papers, 2021, 35(12), 12114 (in Chinese).
罗学昆, 赵春玲, 查小晖, 等. 材料导报, 2021, 35(12), 12114.
56 Kumar S A, Raman S G S, Narayanan T S N S. Transactions of the Indian Institute of Metals, 2014, 67(1), 137.
57 Ao N, Liu D X, Zhang X H, et al. International Journal of Fatigue, 2023, 170, 107567.
58 Soyama H, Kuji C, Liao Y L. Journal of Magnesium and Alloys, 2023, 11(5), 1592.
59 Chui P F, Sun K N, Sun C, et al. Applied Surface Science, 2011, 257(15), 6787.
60 Ahmed A A, Mhaede M, Wollmann M, et al. Surface and Coatings Technology, 2014, 259, 448.
61 Mineta T, Sato H. Materials Science and Engineering: A, 2018, 735, 418.
62 Huo W T, Zhang W, Lu J W, et al. Journal of Alloys and Compounds, 2017, 720, 324.
63 Ren K, Yue W, Zhang H Y. Surface and Coatings Technology, 2018, 349, 602.
64 Hallab N J, Bundy K J, O'Connor K, et al. Tissue Engineering, 2001, 7(1), 55.
65 Kim D, Pugno N M, Ryu S. Scientific Reports, 2016, 6(1), 37813.
66 Guo H Y, Li B, Feng X Q. Physical Review E, 2016, 94(4), 042801.
67 Mazigi O, Kannan M B, Xu J, et al. ACS Biomaterials Science & Engineering, 2017, 3(4), 509.
68 Bagherifard S, Hickey D J, De Luca A C, et al. Biomaterials, 2015, 73, 185.
69 Bahl S, Shreyas P, Trishul M, et al. Nanoscale, 2015, 7(17), 7704.
70 Misra R D K, Nune C, Pesacreta T C, et al. Acta Biomaterialia, 2013, 9(4), 6245.
71 Misra R D K, Thein-Han W W, Pesacreta T C, et al. Acta Biomaterialia, 2009, 5(5), 1455.
72 Lai M, Yang X F, Liu Q, et al. AIMS Materials Science, 2014, 1(1), 45.
73 Agrawal R K, Pandey V, Barhanpurkar-Naik A, et al. Ultrasonics, 2020, 104, 106110.
74 Hou X N, Mankoci S, Walters N, et al. Materials Science and Enginee-ring: C, 2018, 93, 12.
75 Uddin M, Hall C, Santos V, et al. Materials Science and Engineering: C, 2021, 118, 111459.
76 Huo W T, Lin X, Yu S, et al. Journal of Materials Science, 2019, 54(5), 4409.
77 Hsu S K, Ho W F, Wu S C, et al. Thin Solid Films, 2016, 620, 139.
78 Motemani Y, Greulich C, Khare C, et al. Applied Surface Science, 2014, 292, 626.
79 Wen M, Wen C, Hodgson P, et al. Colloids and Surfaces B: Biointerfaces, 2014, 116, 658.
80 Zhao C L, Ji W P, Han P, et al. Journal of Nanoparticle Research, 2011, 13(2), 645.
81 Zhao C L, Han P, Ji W P, et al. Journal of Biomaterials Applications, 2012, 27(2), 113.
82 Huang R, Liu L, Li B, et al. Journal of Materials Science & Technology, 2021, 73, 31.
83 Zhang R X, Mankoci S, Walters N, et al. Journal of Biomedical Materials Research, 2019, 107(6), 1854.
84 Hou X N, Qin H F, Gao H Y, et al. Materials Science and Engineering: C, 2017, 78, 1061.
85 Eisenbarth E, Velten D, Schenk-Meuser K, et al. Biomolecular Engineering, 2002, 19(2), 243.
86 Zhou H X, Pang X D. Chemical Reviews, 2018, 118(4), 1691.
87 Huang R, Hao Y, Pan Y, et al. RSC Advances, 2022, 12(31), 20037.
88 Misra R D K, Thein-Han W W, Pesacreta T C, et al. Acta Biomaterialia, 2010, 6(8), 3339.
89 Ryan C N M, Pugliese E, Shologu N, et al. Biomaterials Advances, 2023, 144, 213196.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed