Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23030182-9    https://doi.org/10.11896/cldb.23030182
  高分子与聚合物基复合材料 |
拉伸成膜工艺诱导聚乳酸结晶行为的研究进展
丁诗娟, 崔玲娜, 刘跃军*
湖南工业大学包装与材料工程学院,湖南 株洲 412007
Research Progress on the Crystallization Behavior of Polylactic Acid Film Induced by Stretching Process
DING Shijuan, CUI Lingna, LIU Yuejun*
College of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, Hunan, China
下载:  全 文 ( PDF ) ( 12992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚乳酸(Polylactic acid,PLA)具有良好的生物可降解性、生物相容性以及一定的力学强度,是当前包装材料应用研究的热点之一。然而,PLA脆性大、耐热性差等问题限制了其应用范围的拓展。拉伸成膜工艺是一种温度场、拉伸场等多场耦合的塑料薄膜成型工艺,在拉伸成膜过程中,调节拉伸温度、拉伸比、拉伸速率等工艺参数,可改变PLA分子的结晶、取向等凝聚态结构以及拉伸诱导结晶程度,最终改善PLA薄膜的性能。本文综述了拉伸成膜工艺参数(拉伸温度、拉伸比、拉伸速率等)分别对PLA拉伸诱导结晶行为的影响,以期为实现PLA薄膜的高性能化以及拓展其应用范围提供一定的理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁诗娟
崔玲娜
刘跃军
关键词:  聚乳酸(PLA)  拉伸薄膜  拉伸诱导结晶  凝聚态结构  拉伸比    
Abstract: Polylactic acid (PLA) has garnered significant research interest as a sustainable packaging material due to its excellent biodegradability, biocompatibility, and tensile strength. However, its application is constrained by inherent brittleness and poor heat resistance. The stretching process, a film-forming technique characterized by the coupling of temperature and strain fields, offers a promising approach to overcoming these limitations. By adjusting process parameters such as stretching temperature, stretching ratio, and stretching rate during the process, the crystallization, molecular orientation, and other condensed structures of PLA can be modified, as well as the degree of strain-induced crystallization, thereby enhancing the overall performance of PLA films. This paper reviews the effect of parameters (including stretching temperature, stretching ratio, and stretching rate) on the strain-induced crystallization behavior during the stretching process. The goal is to provide theoretical insights that can guide the development of high-performance PLA films and broaden their application potential.
Key words:  polylactic acid    stretched film    strain-induced crystallization    condensed structure    stretching ratio
发布日期:  2024-10-12
ZTFLH:  TQ32  
基金资助: 国家自然科学基金(12372245);湖南省教育厅科研项目(22B0595)
通讯作者:  *刘跃军,通信作者,湖南工业大学包装与材料工程学院教授、博士研究生导师。2002年获华南理工大学博士学位,2013年3月在美国威斯康星大学麦迪逊分校大学访学。目前主要从事高分子材料加工工程、先进包装材料与技术等领域的教学与科研工作。以第一作者或通信作者发表SCI、EI学术论文60余篇,授权发明专利30余项,荣获湖南省科技进步一等奖、中国产学研合作创新成果一等奖、中国流变学青年奖、湖南省青年科技奖。yjliu_2005@126.com   
作者简介:  丁诗娟,2024年于湖南工业大学包装与材料工程学院获得硕士学位,研究方向为高分子材料改性与加工成型。
引用本文:    
丁诗娟, 崔玲娜, 刘跃军. 拉伸成膜工艺诱导聚乳酸结晶行为的研究进展[J]. 材料导报, 2024, 38(18): 23030182-9.
DING Shijuan, CUI Lingna, LIU Yuejun. Research Progress on the Crystallization Behavior of Polylactic Acid Film Induced by Stretching Process. Materials Reports, 2024, 38(18): 23030182-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030182  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23030182
1 Cao C, Xu Z J, Li D A. Polyester Industry, 2022, 35(3), 5 (in Chinese).
曹超, 许战军, 李德安. 聚酯工业, 2022, 35(3), 5.
2 Paula K T, Gaál G, Almeida G, et al. Optics & Laser Technology, 2018, 101, 74.
3 Zhang T, Yu Q Y, Yang H T, et al. Journal of Applied Polymer Science, 2019, 136(19), 47510.
4 Zhang Y, Yang Z J, Yu Y, et al. ACS Applied Polymer Materials, 2019, 1(4), 737.
5 Li C H, Jiang T, Wang J F, et al. ACS Applied Materials & Interfaces, 2017, 9(31), 25818.
6 Xue B, Cheng Z L, Yang S D, et al. Composites Part B:Engineering, 2021, 207, 108556.
7 Razavi M, Wang S Q. Macromolecules, 2019, 52(14), 5429.
8 Ding R, Xu A, Liu Y F, et al. Plastics, 2022, 51(3), 58 (in Chinese).
丁蕊, 徐昂, 刘倚帆, 等. 塑料, 2022, 51(3), 58.
9 Hu J P, Yao L H, Xing D, et al. China Forest Products Industry, 2022, 59(6), 29 (in Chinese).
胡建鹏, 姚利宏, 邢东, 等. 林产工业, 2022, 59(6), 29.
10 Yang K J, Zhou W J, Fang H G. Plastics, 2022, 51(3), 7 (in Chinese).
杨康杰, 周文娟, 方华高. 塑料, 2022, 51(3), 7.
11 Jiang Y P, Zhang Y X, Li J L, et al. Polymer Materials Science & Engineering, 2021, 37(9), 133 (in Chinese).
江元平, 张云秀, 李嘉莉, 等. 高分子材料科学与工程, 2021, 37(9), 133.
12 Xu S K, Wu Z W, Mao H J. Shanghai Plastics, 2020(4), 24 (in Chinese).
徐绍魁, 吴正文, 茆汉军. 上海塑料, 2020(4), 24.
13 Jariyasakoolroj P, Tashiro K, Chinsirikul W, et al. Macromolecular Materials and Engineering, 2019, 304(9), 1900340.
14 Dong Y, Liu Y J, Cui L N, et al. Materials Reports, 2023, 37(9), 224 (in Chinese).
董煜, 刘跃军, 崔玲娜, 等. 材料导报, 2023, 37(9), 224.
15 Gao X R, Li Y, Huang H D, et al. Macromolecules, 2019, 52(14), 5278.
16 Xia M L, Shi K X, Zhou M Z, et al. Polymers for Advanced Technologies, 2019, 30(9), 2436.
17 Bagheri E, Mosaddegh P, Behzad T. Journal of Applied Polymer Science, 2020, 137(38), 1.
18 Kanai T, Okuyama Y, Takashige M. Advances in Polymer Technology, 2018, 37(8), 2894.
19 Zin M R M, Mahendrasingam A, Konkel C, et al. Polymer, 2021, 216, 123422.
20 Liang M, Wang Y, Song S X, et al. Materials Reports, 2015, 29(S2), 413 (in Chinese).
梁敏, 王羽, 宋树鑫, 等. 材料导报, 2015, 29(S2), 413.
21 Li M Z, Wang J, Lu S J, et al. Polymer Bulletin, 2018(1), 58 (in Chinese).
李明专, 王君, 鲁圣军, 等. 高分子通报, 2018(1), 58.
22 Zhang Y, Tong Y, Li Y, et al. China Plastics Industry, 2018, 46(1), 99 (in Chinese).
张也, 佟毅, 李义, 等. 塑料工业, 2018, 46(1), 99.
23 Mallegni N, Phuong T V, Coltelli M B, et al. Materials, 2018, 11(1), 1.
24 Stoclet G, Elkoun S, Miri V, et al. International Polymer Processing, 2007, 22(5), 385.
25 Ou X, Cakmak M. Polymer, 2010, 51(3), 783.
26 Zhou H W, Song Z Q, Cai S Q. Journal of Polymer Science, 2020, 58(24), 3488.
27 Yoksan R, Dang K M, Boontanimitr A, et al. International Journal of Biological Macromolecules, 2021, 190, 141.
28 Chen M J. Packaging Forefront, 2015(4), 12 (in Chinese).
陈孟杰. 包装前沿, 2015(4), 12.
29 Chen Y J, Han L J, Li Z L, et al. RSC Advances, 2017, 7(2), 712.
30 Xu R J, Tian Z Q, Xie J Y, et al. Polymer Crystallization, 2019, 2(3), e10072.
31 Liu J Y, Zhang S J, Zhang L Y, et al. Colloid and Polymer Science, 2017, 295(2), 297.
32 Zhou C B, Li H F, Zhang W Y, et al. CrystEngComm, 2016, 18(18), 3237.
33 Li J Q, Xu M H, He H Z, et al. ACS Applied Polymer Materials, 2022, 4(10), 6969.
34 Zhang Q, Zhang T C, Zhou Y, et al. Polymer Journal, 2021, 53(12), 1371.
35 Zhang Q L, Zhang R, Meng L, et al. Polymer, 2016, 101, 15.
36 Zhou L, Xu P P, Ni S H, et al. Chinese Journal of Polymer Science, 2022, 40(10), 1201.
37 Ouchiar S, Stoclet G, Cabaret C, et al. Polymer, 2016, 99, 358.
38 Boonthamjinda L, Petchwatana N, Covavisaruch S, et al. Key Engineering Materials, 2015, 659, 363.
39 Zhou J, Zheng Y, Shan G R, et al. Polymer, 2020, 188, 122121.
40 Al-Itry R, Lamnawar K, Maazouz A, et al. European Polymer Journal, 2015, 68, 288.
41 Xu P P, Yang S, Gao X R, et al. Composites Part B:Engineering, 2021, 222, 109048.
42 Billimoria K, Heeley E L, Parsons N, et al. European Polymer Journal, 2018, 101, 127.
43 Jariyasakoolroj P, Tashiro K, Wang H, et al. Polymer, 2015, 68, 234.
44 Xu S, Tahon J F, Waele D, et al. Express Polymer Letters, 2020, 14(11), 1037.
45 Wang Y M, Li M, Wang K J, et al. Soft Matter, 2014, 10(10), 1512.
46 Chen X L, Jeffrey K, Shaw L H. Journal of Polymer Science Part B:Polymer Physics, 2011, 49, 9.
47 Li Z Q, Ye L, Zhao X W, et al. Journal of Industrial and Engineering Chemistry, 2017, 52, 338.
48 Takahashi K, Sawai D, Yokoyama T, et al. Polymer, 2004, 45(14), 4969.
49 Ma D Z. Structures and performance of polymers, Science Press, China, 2012, pp.229 (in Chinese).
马德柱. 聚合物结构与性能, 科学出版社, 2012, pp.229.
50 Rezabeigi E, Wood-Adams P M, Drew R A L. Journal of Polymer Science Part B:Polymer Physics, 2017, 55(14), 1055.
51 Li Z Q, Ye L, Zhao X W, et al. Journal of Biomedical Materials Research Part A, 2016, 104(5), 1082.
52 Li J F, Ye W Y, Fan Z Y, et al. ACS Applied Materials & Interfaces, 2021, 13(4), 5469.
53 Singh A A, Wei J, Herrera N, et al. Composites Science and Technology, 2018, 162, 140.
54 Shen T F, Xu Y S, Ma P M, et al. RSC Advances, 2016, 6(75), 71046.
55 Singh A A, Geng S, Herrera N, et al. Composites Part A:Applied Science and Manufacturing, 2018, 104, 101.
56 Jiang W, Liang Y, Zhang Y, et al. Polymer, 2022, 261, 1.
57 Du B X, Hou Y P, Xiao M, et al. In:Conference on Electrical Insulation and Dielectric Phenomena. Denver, CO, USA, 2022, 135.
58 Chapleau N, Huneault M A, Li H. International Polymer Processing, 2007, 22(5), 402.
59 Katanyoota P, Jariyasakoolroj P, Sane A. Polymer Bulletin, 2023, 80(5), 5219.
[1] 张亚玲, 程国君, 唐忠锋, 万祥龙, 丁国新, 王周锋. PVA基复合材料导热性能的研究进展[J]. 材料导报, 2024, 38(16): 23060217-10.
[2] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[3] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[4] 李姝姝, 程鹏飞, 马应霞, 李广全. SEBS与β-NAs对PP的协同增韧作用及增韧机理研究[J]. 材料导报, 2024, 38(12): 23050100-8.
[5] 邬志超, 倪爱清, 陈俊磊, 王继辉. 吸波预浸料树脂及其复合材料的综合性能研究[J]. 材料导报, 2024, 38(10): 23010035-10.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[9] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[10] 刘宜娜, 杨荣杰, 冯文静, 王坤, 欧良, 陈兆恒, 陈昱隆. 聚氨酯软质泡沫制品阻燃性能检测分析[J]. 材料导报, 2024, 38(3): 22060066-4.
[11] 陈双, 雷子萱, 徐力, 李嘉玄, 陈栋梁, 强军锋, 刘育红. 线型酚醛树脂结构改性的研究进展[J]. 材料导报, 2023, 37(23): 22050233-10.
[12] 李志尧, 文鑫, 杨晨光, 王栋. 表面具有交联结构的UHMWPE纤维的制备及抗蠕变性能研究[J]. 材料导报, 2023, 37(21): 22040008-6.
[13] 刘金明, 张一甫, 甘卫星, 莫海林. 糖基三聚氰胺甲醛树脂木材胶黏剂的研究进展[J]. 材料导报, 2023, 37(17): 21120170-7.
[14] 叶姣凤, 王飞, 张钧翔, 左洋, 冯利邦, 罗晓晓. 热可逆聚氨酯改性自修复环氧树脂的力学性能和自修复行为[J]. 材料导报, 2023, 37(14): 22010044-6.
[15] 胡帅帅, 许智鹏, 雷子萱, 陈双, 刘育红, 强军锋. 脂环族环氧-丙烯酸酯混杂光固化树脂的设计及性能研究[J]. 材料导报, 2023, 37(11): 21090171-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed