Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 23010035-10    https://doi.org/10.11896/cldb.23010035
  高分子与聚合物基复合材料 |
吸波预浸料树脂及其复合材料的综合性能研究
邬志超1, 倪爱清2, 陈俊磊1, 王继辉1,*
1 武汉理工大学材料科学与工程学院,武汉 430070
2 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
Study on the Comprehensive Properties of Absorbing Prepreg Resin and Its Composite
WU Zhichao1, NI Aiqing2, CHEN Junlei1, WANG Jihui1,*
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 13522KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将羰基铁粉(CIP)和乙炔炭黑(CB)作为吸波剂引入到中温固化预浸料树脂体系中,通过测试吸波预浸料树脂的流变性能、凝胶时间、固化特征温度、热失重性能等确定吸波剂的加入对预浸料树脂性能的影响。结果表明,CIP和CB吸波粒子的加入对预浸料树脂的凝胶时间、固化特征温度的影响较小,对预浸料树脂的流变特性影响较大。为满足工艺性能要求,CIP吸波粒子的加入量与树脂的质量比宜控制为0~2.5,CB吸波粒子的加入量与树脂的质量比宜控制为0~0.03。相比于单层结构吸波复合材料,双层结构吸波复合材料的吸波性能更为优异,综合考虑其成型工艺性能和吸波性能等,以C3C为透波层、Fe250C为损耗层的材料组合综合性能最佳,其最大有效吸波带宽为3.85 GHz,对应的透波层和损耗层厚度分别为0.9 mm和1.5 mm,最小电磁波的反射损耗RL值为-35.46 dB,对应的透波层和损耗层厚度分别为0.5 mm和1.4 mm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邬志超
倪爱清
陈俊磊
王继辉
关键词:  预浸料树脂  吸波粒子  电磁参数  结构吸波复合材料    
Abstract: The carbonyl iron powder (CIP) and acetylene black (CB) were introduced into the medium temperature curing prepreg resin system as absorbent agents. The influence of the addition of absorbent agents on the properties of prepreg resin was determined by testing the rheological properties, gel time, curing characteristic temperature, and thermogravimetric properties of the prepreg resin. The results showed thatthe addition of CIP and CB absorbent particles had little effect on the gel time and curing characteristic temperature of prepreg resin, but great effect on the rheological properties of prepreg resin. In order to meet the requirements of process performance, the mass ratio of CIP and CB absorbent particles to resin should be controlled from 0 to 2.5, and the mass ratio of CB to resin should be controlled from 0 to 0.03. Compared with the single-layer structure absorbing composite material, the two-layer structure absorbing composite material had better absorbing performance. Considering its forming process performance and absorbing performance comprehensively, the material combination of C3C as the wave penetrating layer and Fe250C as the loss layer had the best comprehensive performance. And its maximum effective absorbing bandwidth is 3.85 GHz, the corresponding thickness of the wave penetrating layer and the loss layer are 0.9 mm and 1.5 mm. The minimum RL value is -35.46 dB, the corresponding thickness of the wave penetra-ting layer and the loss layer are 0.5 mm and 1.4 mm, respectively.
Key words:  prepreg resin    absorbing particle    electromagnetic parameter    structural absorbing composite
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TQ322  
通讯作者:  *王继辉,武汉理工大学材料科学与工程学院教授、博士研究生导师。1982年武汉工业大学复合材料专业本科毕业,1987年武汉工业大学固体力学专业硕士毕业后到武汉理工大学(原武汉工业大学)工作至今,2000年武汉理工大学材料学专业博士毕业。目前主要从事聚合物基复合材料,专注于舰船复合材料、航空复合材料、复合材料在电力行业中的应用等方面的研究工作。发表论文100余篇,包括Composites Part A Applied Science & Manufacturing、Composite Structures、Materials、Applied Composite Materials等。jhwang@whut.edu.cn   
作者简介:  邬志超,2020年6月于武汉理工大学获得工学学士学位。现为武汉理工大学材料科学与工程学院硕士研究生,在王继辉教授的指导下进行研究。目前主要的研究领域为中温固化预浸料树脂、吸波预浸料树脂及其结构吸波复合材料。
引用本文:    
邬志超, 倪爱清, 陈俊磊, 王继辉. 吸波预浸料树脂及其复合材料的综合性能研究[J]. 材料导报, 2024, 38(10): 23010035-10.
WU Zhichao, NI Aiqing, CHEN Junlei, WANG Jihui. Study on the Comprehensive Properties of Absorbing Prepreg Resin and Its Composite. Materials Reports, 2024, 38(10): 23010035-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010035  或          http://www.mater-rep.com/CN/Y2024/V38/I10/23010035
1 Hou T Q, Jia Z R, He S Q, et al. Journal of Colloid and Interface Science, 2021, 583, 321.
2 Li Q, Zhang Z, Qi L P, et al. Advanced Science, 2019, 6(8), 1801057.
3 Lv H L, Yang Z H, Pan H G, et al. Progress in Materials Science, 2022, 127, 100946.
4 Lv H L, Guo Y H, Yang Z H, et al. Journal of Materials Chemistry C, 2017, 5(3), 491.
5 Dong J, Zhou W C, Qing Y C, et al. Ceramics International, 2018, 44(12), 14007.
6 Liu J L, Zhang L M, Wu H J. Journal of Physics D-Applied Physics, 2021, 54(20), 203001.
7 Zhang M W, Qu G D, Peng M Y, et al. Materials Reports, 2021, 35(S1), 62 (in Chinese).
张明伟, 曲冠达, 庞梦瑶, 等. 材料导报, 2021, 35(S1), 62.
8 Zhao S X, Ma H, Shao T Q, et al. Ceramics International, 2021, 47(12), 17337.
9 Liu Y J, Yang Y F. Textile Research Journal, 2021, 91(17), 1986.
10 Chen W, Zheng X N, He X Y, et al. Polymer Testing, 2020, 86, 106448.
11 Luo F, Liu D Q, Cao T S, et al. Advanced Composites and Hybrid Materials, 2021, 4(3), 591.
12 Shin J H, Jang H K, Choi W H, et al. Journal of Applied Polymer Science, 2015, 132(22), 42019.
13 Xue J, Wu C, Du X, et al. Materials Research Express, 2020, 7(4), 045303.
14 Santhosi B, Ramji K, Rao N. Polymers & Polymer Composites, 2021, 29(5), 444.
15 Cai H S. Study on electromagnetic properties of fiber reinforced epoxy resin absorbent composites. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
蔡海硕. 纤维增强环氧树脂吸波复合材料的电磁性能研究. 硕士学位论文, 南京航空航天大学, 2019.
16 Zhang F F, Yu H, Zhang W T. Handbook for thermosetting resin matrix composite prepreg usage, China Building Materials Industry Press, China, 2019, pp. 6 (in Chinese).
张凤翻, 于华, 张雯婷. 热固性树脂基复合材料预浸料使用手册, 中国建材工业出版社, 2019, pp. 6.
17 Wu Z C, Wang J H, Ni A Q, et al. Polymer Materials Science & Engineering, 2022, 38(9), 95 (in Chinese).
邬志超, 王继辉, 倪爱清, 等. 高分子材料科学与工程, 2022, 38(9), 95.
18 Xie L P. Research on latent fest curing epoxy resin for prepreg. Master’s Thesis, North University of China, China, 2021 (in Chinese).
谢利鹏. 预浸料用潜伏性快速固化环氧树脂体系的研究. 硕士学位论文, 中北大学, 2021.
19 Lei P. Preparation of heat resistant epoxy resin for prepreg and research of its properties. Master’s Thesis, Wuhan University of Technology, China, 2016 (in Chinese).
雷攀. 预浸料用耐热环氧的制备与性能研究. 硕士学位论文, 武汉理工大学, 2016.
20 Tareen M H K, Hussain F, Zubair Z, et al. Journal of Composite Materials, 2022, 56(29), 4473.
21 Dou Y H, Zhang L, Gu H C. Journal of Functional Materials, 2007(1), 119 (in Chinese).
窦永华, 张玲, 古宏晨. 功能材料, 2007 (1), 119.
22 Huang Y Z, Huang Z Y, Guo Y, et al. Engineering Plastics Application, 2018, 46(9), 47 (in Chinese).
黄远征, 黄智勇, 郭一, 等. 工程塑料应用, 2018, 46(9), 47.
23 Zhao J. Study on analytical technology of bisphenol an epoxy resin system. Ph. D. Thesis, Qingdao University of Science & Technology, China, 2016 (in Chinese).
赵娟. 双酚A环氧树脂体系主要性能表征技术研究. 博士学位论文, 青岛科技大学, 2016.
24 Lee S H, Lee S G, Lee J S, et al. Polymers, 2022, 14(22), 4904.
25 Kitichatpayak D, Makcharoen W, Vittayakorn N, et al. Polymer-Plastics Technology and Materials, 2022, 61(16), 1826.
26 Lv H L, Guo Y H, Zhao Y, et al. Carbon, 2016, 110, 130.
27 Wang H Y, Zhu D M, Wang X F, et al. Composites Part A-Applied Science and Manufacturing, 2017, 93, 10.
28 Green M, Chen X B. Journal of Materiomics, 2019, 5(4), 503.
29 Lee W J, Baek S M, Joo Y S. Advanced Composite Materials, 2019, 28, 79.
30 Kong J, Gao H, Li Y, et al. Materials Reports, 2020, 34(9), 9055 (in Chinese).
孔静, 高鸿, 李岩, 等. 材料导报, 2020, 34(9), 9055.
[1] 孙明娟, 刘光烜, 张淑媛, 李雪. 耐腐蚀吸波超材料的制备及应用[J]. 材料导报, 2019, 33(Z2): 613-616.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed