Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 89-92    https://doi.org/10.11896/j.issn.1005-023X.2017.012.019
  材料研究 |
Sn-58Bi合金连续挤压过程中的组织及性能演变*
尹建成, 张八淇, 刘丽娜, 陈业高, 王力强, 杨环, 钟毅
昆明理工大学材料科学与工程学院, 昆明 650093
Microstructure and Property Evolution of Sn-58Bi Alloy During Continuous Extrusion
YIN Jiancheng, ZHANG Baqi, LIU Lina, CHEN Yegao, WANG Liqiang, YANG Huan, ZHONG Yi
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 1574KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用连续挤压技术制备了Sn-58Bi合金丝,并对连续挤压过程中的组织及性能演变进行了研究。结果表明,在摩擦剪切变形区,Sn相沿变形方向被拉长,Bi相呈带状分布;镦粗区的Bi相呈粗大团状分布;粘着区开始发生动态再结晶,Bi相呈蔷薇状分布;直角弯曲挤压区发生完全动态再结晶,形成了细小的再结晶组织。在连续挤压过程中,Sn-58Bi合金的显微硬度总体呈上升趋势。合金丝的抗拉强度和伸长率均随着挤压比的增大而增大。研究表明Sn-58Bi合金的断裂主要是由Sn相和Bi相之间的相界分离和Bi相破碎引起的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹建成
张八淇
刘丽娜
陈业高
王力强
杨环
钟毅
关键词:  Sn-58Bi合金丝  连续挤压  显微组织  力学性能  断裂特征    
Abstract: The Sn-58Bi alloy wires were fabricated by continuous extrusion technology. The microstructure and property evolution of the Sn-58Bi alloy during continuous extrusion were researched. The results showed that Sn matrix was elongated along the extrusion direction and the Bi phase was in band-like distribution in friction-shearing region. The Bi phase seems like coarser cluster structure in the upsetting deformation region. The dynamic recrystallization began to occur and Bi phase turns into rosette structure in the adhesion region. The dynamic recrystallization was completed and resulted in finer recrystallization structure in the right-angle bending region. The Vickers hardness of Sn-58Bi alloy increased with the increasing deformation during continuous extrusion except in the right-angle bending region. The tensile strength and elongation of alloy increase with the increase of the extrusion ratio. Analysis has indicated that the fracture of Sn-58Bi alloy wire was caused by inter-phase separation between the tin and bismuth phase and broken of bismuth.
Key words:  Sn-58Bi alloy wire    continuous extrusion    microstructure    mechanical property    fracture characteristics
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TG115.28  
基金资助: *国家自然科学基金(50874055)
作者简介:  尹建成:男,1978年生,博士,副教授,从事金属材料成形新技术研究 E-mail:yjc_2002@126.com
引用本文:    
尹建成, 张八淇, 刘丽娜, 陈业高, 王力强, 杨环, 钟毅. Sn-58Bi合金连续挤压过程中的组织及性能演变*[J]. 《材料导报》期刊社, 2017, 31(12): 89-92.
YIN Jiancheng, ZHANG Baqi, LIU Lina, CHEN Yegao, WANG Liqiang, YANG Huan, ZHONG Yi. Microstructure and Property Evolution of Sn-58Bi Alloy During Continuous Extrusion. Materials Reports, 2017, 31(12): 89-92.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.019  或          http://www.mater-rep.com/CN/Y2017/V31/I12/89
1 Divya B,Hiroshi S,Alexander M. Characterization and fracture behavior of bismuth-tin thermal fuse alloy wires produced by the ohno continuous casting process[J]. Mater Characterization,2010,61(9):882.
2 Jung H R,Kim H H,Lee W J. Characterization of small-sized eutectic Sn-Bi solder bumps fabricated using electroplating[J]. J Electron Mater,2006,35(5):1067.
3 Puttlitz J K, Galyon G T. Impact of the ROHS directive on high-performance electronic systems part Ⅱ:Key reliability issues preventing the implementation of lead-free solders[J]. J Mater Sci-Mater EL,2007,1(8):331.
4 Zhang Dongmei, Ding Guipu, Wang Hong, et al. Low temperature hermetic bonding process based on electro deposited Sn/Bi alloy[J]. J Funct Mater Devices,2006,12(3):211(in Chinese).
张东梅,丁桂甫,汪红,等. 基于Sn/Bi合金的低温气密性封装工艺研究[J]. 功能材料与元器件学报,2006,12(3):211.
5 Zhang Xinping,Yin Limeng,Yu Chuanbao. Advances in research and application of lead-free solders for electronic and photonic packaging[J]. Chin J Mater Res,2008,22(1):1(in Chinese).
张新平,尹立孟,于传宝.电子和光子封装无铅钎料的研究和应用进展[J].材料研究学报,2008,22(1):1.
6 Peng Zi, Li Mingmao. Development of CONFORM process and numerical simulation[J]. Aluminium Fabrication,2009(3):7(in Chinese).
彭孜,李明茂. CONFORM连续挤压技术及数值模拟的发展[J]. 铝加工,2009(3):7.
7 Lv Xiaochun, He Peng, Zhang Binbin, et al. Effect of solidification mode on microstructure and properties of Sn-Bi solders[J].J Mater Eng,2010(10):89(in Chinese).
吕晓春,何鹏,张斌斌,等. 凝固方式对Sn-Bi钎料组织和性能的影响[J].材料工程,2010(10):89.
8 Liu X Y, Huang M L, Wu C M L, et al. Effect of Y2O3 particles on microstructure formation and shear properties of Sn-58Bi solder[J]. Mater Sci:Mater Electron,2010,21(10):1046.
9 Sui Xian, Song Baoyun, Li Bing, et al. Characteristic of microstructure and properties evolution of H65 brass alloy during continuous extrusion process[J]. Trans Nonferrous Metals Soc China,2009(6):1049(in Chinese).
隋贤,宋宝韫,李冰,等. H65黄铜合金连续挤压过程中的组织和性能演变特征[J].中国有色金属学报,2009(6):1049.
10 Kwon Y A, Daya Z A, et al. Deformation behavior of bismuth-tin alloy wires with eutectic morphology produced by the ohno continuous casting process[J]. Mater Sci Eng A,2004,368(1):323.
11 Ding Y, Wing C, Li M, et al. In-situ SEM observation on fracture behaviors of Sn-based solder alloys[J]. J Mater Sci,2005,40(8):1993.
12 Osório W R, Peixoto L C, Garcia L R, et al. Microstructure and mechanical properties of Sn-Bi, Sn-Ag and Sn-Zn lead-free solder alloys[J]. J Alloys Compd,2013,572:97.
13 Sengupta S, Soda H, Mclean A. Microstructure and properties of a bismuth-indium-tin eutectic alloy[J]. J Mater Sci,2002,37(9):1747.
14 Chen S, Zhang L, Liu J, et al. A reliability study of nanoparticles reinforced composite lead-free solder[J]. Mater Trans,2010,51(10):1720.
15 Ma B,Li J,Zhang G. Structural morphologies of Cu-Sn-Bi immiscible alloys with varied compositions[J]. J Alloys Compd,2012,535:95.
16 Pearson C E. The visous properties of extruded eutectic alloys of lead-tin and bismuth tin[J]. Metals,2002,54(1):111.
17 Long Z, Gu X, Liu P, et al. The microstructure and mechanical properties of Sn-58Bi eutectic alloy wires[C]//Brazing and Soldering 2012: IBSC Proceedings of 5th International Conference. ASM International,2012.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[4] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[5] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[6] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[7] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[8] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[9] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed