Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22070184-6    https://doi.org/10.11896/cldb.22070184
  无机非金属及其复合材料 |
石墨烯水泥砂浆抗碳化试验及预测模型分析
董健苗1, 何其1, 周铭2,3,*, 王振宇1, 庄佳桥1, 邹明璇1, 李万金1
1 广西科技大学土木建筑工程学院,广西 柳州 545006
2 广西科技大学机械与交通工程学院,广西 柳州 545006
3 广西清鹿新材料科技有限责任公司,广西 柳州 545006
Carbonization Resistance Test and Prediction Model Analysis of Graphene Cement Mortar
DONG Jianmiao1, HE Qi1, ZHOU Ming2,3,*, WANG Zhenyu1, ZHUANG Jiaqiao1, ZOU Mingxuan1, LI Wanjin1
1 School of Civil Engineering and Architecture, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
2 School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
3 Guangxi Qinglu New Material Technology Co., Ltd., Liuzhou 545006, Guangxi, China
下载:  全 文 ( PDF ) ( 19378KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将两种不同尺寸的石墨烯(Peeling graphene,PG)料浆进行分散,制备出石墨烯水泥砂浆,通过快速碳化法对不同龄期的石墨烯水泥砂浆进行碳化试验,并通过X射线衍射(XRD)、扫描电镜(SEM)以及X射线能谱(EDS)等测试手段观察石墨烯水泥基材料的组成以及水化产物的微观形貌。试验结果表明,碳化龄期为56 d时,大尺寸石墨烯(PG1)和小尺寸石墨烯(PG2)水泥砂浆试件的碳化深度分别为3.7 mm、5.5 mm,相比空白组分别降低了58.4%、38.2%。使用R语言中的lm函数,建立了不同碳化时间时三种水泥砂浆试件的碳化深度非线性回归预测模型,研究碳化时间与碳化深度的关系,结果表明,模拟结果与试验实测值吻合度高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董健苗
何其
周铭
王振宇
庄佳桥
邹明璇
李万金
关键词:  石墨烯  水泥砂浆  抗碳化性能  微观分析  非线性预测模型    
Abstract: Two different sizes of graphene (Peeling graphene, PG) slurry were dispersed, and then the graphene cement mortars were prepared. Carbonization test of graphene cement mortar at different ages was conducted by rapid carbonization methods. Composition and hydration pro-ducts of graphene cement-based materials were observed by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS) tests. The microscopic morphology of graphene cement-based materials and hydration products were observed. The test results showed that at the age of 56 d, the carbonation depths of the large-size graphene (PG1) and small-size graphene (PG2) cement mortar samples were 3.7 mm and 5.5 mm, respectively, which were 58.4% and 38.2% lower than those of the blank sample. Using the lm function of R language, the nonlinear regression prediction models on the carbide depth of the three cement mortar test blocks at different ages were established, the relationship between carbonation time and carbonation depth was investigated. The simulation results have a high agreement with the experimental measured values.
Key words:  graphene    cement mortar    carbonation resistance    micro analysis    nonlinear prediction model
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51568009;12062002);广西科技攻关项目(桂科攻1114016-6);广西科学研究与技术开发计划项目(AC19245071);广西研究生教育创新计划项目(GKYC202009)
通讯作者:  *周铭,研究员、硕士研究生导师,清华大学摩擦学国家重点实验室博士,广西科技大学机械与汽车工程学院教授,广西清鹿新材料科技有限责任公司首席科学家。目前从事新材料的机械表/界面行为调控与应用研究工作。在Friction、Carbon、ACS Appl.Mater.& Interfaces、Adv.Mat.Interfaces等期刊发表20余篇SCI收录论文,SCI他引超过400次。 3323296017@qq.com   
作者简介:  董健苗,广西科技大学土木建筑工程学院教授、硕士研究生导师。1994年武汉工业大学无机非金属材料专业本科毕业,2001年武汉理工大学材料学专业硕士毕业后到广西科技大学工作至今。2016年1月至2016年9月在英国UCL大学访学。目前主要从事高性能水泥混凝土等方面的研究工作。发表论文40余篇,包括Cement and Concrete Research、Journal of Wuhan University of Technology-Materials Science Edition、《硅酸盐学报》《建筑材料学报》《材料导报》等。
引用本文:    
董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
DONG Jianmiao, HE Qi, ZHOU Ming, WANG Zhenyu, ZHUANG Jiaqiao, ZOU Mingxuan, LI Wanjin. Carbonization Resistance Test and Prediction Model Analysis of Graphene Cement Mortar. Materials Reports, 2024, 38(5): 22070184-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070184  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22070184
1 Dong J M, Nie H, Yan Y J, et al. New Building Materials, 2016, 43(8), 89(in Chinese).
董健苗, 聂浩, 燕元晶, 等. 新型建筑材料, 2016, 43(8), 89.
2 Raheem A, Mahdy M, Mashaly A A. Construction and Building Materials, 2019, 213, 561.
3 Dong J M, Zou M X, Zhou M, et al. Materials Reports, 2022, 36(24), 76(in Chinese).
董健苗, 邹明璇, 周铭, 等. 材料导报, 2022, 36(24), 76.
4 Cui H Z, Jin Z Y, Zheng D P, et al. Construction and Building Materials, 2018, 181, 713.
5 Dong J M, Liu C, Long S Z. Journal of Building Materials, 2012, 15(4), 490 (in Chinese).
董健苗, 刘晨, 龙世宗. 建筑材料学报, 2012, 15(4), 490.
6 Jin Y, Yang Q, Zhao W B, et al. CIESC Journal, 2020,71(6),116(in Chinese).
金燕, 杨倩, 赵文斌, 等. 化工学报, 2020, 71(6), 116.
7 Yuan Xiaoya. Journal of Inorganic Materials, 2011, 26(6), 561(in Chinese).
袁小亚. 无机材料学报, 2011, 26(6), 561.
8 Lotya M, Hernandez Y, King P J, et al. Journal of the American Chemical Society, 2009, 131(10), 3611.
9 Zhan Dafu. Preparation and research on mechanical sensitivity of graphene cement-based composite. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2021(in Chinese).
詹达富. 石墨烯水泥基复合材料的制备及机敏性能研究. 硕士学位论文, 北京建筑大学, 2021.
10 Liang Jiafeng, Guo Jianqiang, Li Yue, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(3), 704(in Chinese).
梁佳丰, 郭建强, 李岳, 等. 硅酸盐通报, 2021, 40(3), 704.
11 Chen Yu, Jiang Xiaofei, Liu Ronggui, et al. Concrete, 2021(2), 106(in Chinese).
陈妤, 蒋晓菲, 刘荣桂, 等. 混凝土, 2021(2), 106.
12 Chen Baorui, Wu Qisheng, Zhu Huajun, et al. Journal of Materials Science and Engineering, 2018, 36(4), 650(in Chinese).
陈宝锐, 吴其胜, 诸华军, 等. 材料科学与工程学报, 2018, 36(4), 650.
13 Sun Yanfa, Ruan Dong, Wang Xiaojuan, et al. Non-Metallic Mines, 2021, 44(4), 38(in Chinese).
孙延法, 阮冬, 汪晓娟, 等. 非金属矿, 2021, 44(4), 38.
14 Du H, Dai P S. Cement and Concrete Research, 2015, 76, 10.
15 Zhao Ruying. Dispersion of graphene nanosheets and the durability of graphene nanosheets reinforced cement-based composites. Master's Thesis, Dalian University of Technology, China, 2018 (in Chinese).
赵汝英. 石墨烯的分散性及其水泥基复合材料的耐久性. 硕士学位论文, 大连理工大学, 2018.
16 Tong T, Fan Z, Liu Q, et al. Construction and Building Materials, 2016, 106, 102.
17 Mohammed A, Sanjayan J G, Nazari A, et al. Construction and Building Materials, 2018, 168, 858.
18 Dong J M, Yu L, Wang H M, et al. Journal of Guangxi University of Science and Technology, 2021, 32(3), 26 (in Chinese).
董健苗, 余浪, 王慧敏, 等. 广西科技大学学报, 2021, 32(3), 26.
19 Gu Yue. Modified cement-based materials with core-shell nano-SiO2. Ph.D. Thesis, Southeast University, China, 2017 (in Chinese).
顾越. 核壳纳米SiO2改性水泥基材料性能研究. 博士学位论文, 东南大学, 2017.
20 Cheng Z H, Yang S, Yuan X Y. Acta Materiae Compositae Sinica, 2021, 38(2), 339(in Chinese).
程志海, 杨森, 袁小亚. 复合材料学报, 2021, 38(2), 339.
[1] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[2] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[3] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[4] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[5] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[6] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[7] 吴智恒, 黄伊琳, 毕雁冰, 梁立喆, 归立发, 李卫庆, 沈培康, 田植群. 石墨烯及其衍生物改性沥青的研究进展[J]. 材料导报, 2024, 38(1): 22040410-9.
[8] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[9] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[10] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[11] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[12] 王姗迟, 潘嵩玥, 孙俊玲, 赵燕. 热阻型氧化石墨烯基火灾早期预警传感器的研究进展[J]. 材料导报, 2023, 37(24): 22010297-9.
[13] 付宁宁, 谢绍兴, 周禄军, 丁亚萍, 孟凡彬. 电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究[J]. 材料导报, 2023, 37(24): 22090180-5.
[14] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[15] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed