Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 22060163-5    https://doi.org/10.11896/cldb.22060163
  无机非金属及其复合材料 |
表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究
邱毅1,2, 邹江峰2, 马智炜2, 罗强1,2,*, 刘忠华3, 陈洋4, 代逸飞2
1 西南石油大学理学院,成都 610500
2 西南石油大学电气信息学院,成都 610500
3 西南石油大学信息学院,四川 南充 637001
4 西华师范大学电子信息工程学院,四川 南充 637000
First-principle Study on the Effect of Surface Groups on the Adsorption of NO by Ti3C2Tx
QIU Yi1,2, ZOU Jiangfeng2, MA Zhiwei2, LUO Qiang1,2,*, LIU Zhonghua3, CHEN Yang4, DAI Yifei2
1 School of Sciences, Southwest Petroleum University, Chengdu 610500, China
2 School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu 610500, China
3 School of Information, Southwest Petroleum University, Nanchong 637001, Sichuan, China
4 School of Electronic Information Engineering, China West Normal University, Nanchong 637000, Sichuan, China
下载:  全 文 ( PDF ) ( 9877KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作基于密度泛函理论的第一性原理方法,构建了Ti3C2O2、Ti3C2O1.5(OH)0.5、Ti3C2O(OH)、Ti3C2O1.5F0.5和Ti3C2OF五种模型,从几何结构、电荷转移以及电子性质等方面研究了基团种类和比例对Ti3C2Tx吸附NO的影响。结果表明:相较于Ti3C2O2,含低比例-OH和-F基团的Ti3C2Tx对NO的吸附能更大,电荷转移更弱,不利于其探测NO,与实验结果一致;但随着-OH和-F比例的提高,吸附能分别减小和增大,电荷转移分别增强和减弱,表明高比例的-OH有利于Ti3C2Tx探测NO,而高比例的-F是不利的;同时,在吸附NO后,Ti3C2O2在费米能级附近的能带极值曲率变小,电子有效质量增大,表明-O基团有利于Ti3C2Tx探测NO。在几何弛豫过程中NO分子总是以N原子靠近衬底,吸附距离均较小,而且最近邻原子的电子轨道出现杂化,电子的聚集和消散位于两端,表明最近邻原子间成键较弱且偏离子性。此计算结果可以为Ti3C2Tx探测和屏蔽NO提供理论指导,同时为Ti3C2Tx的表面改性提供思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱毅
邹江峰
马智炜
罗强
刘忠华
陈洋
代逸飞
关键词:  二维材料  Ti3C2Tx  NO吸附  密度泛函理论  电子性质    
Abstract: In this work, based on the first-principles method of density functional theory, five models of Ti3C2O2, Ti3C2O1.5(OH)0.5, Ti3C2O(OH), Ti3C2O1.5F0.5 and Ti3C2OF were constructed. The effect of different groups on the adsorption of NO on Ti3C2Tx were studied from the geometric structure, charge transfer and electronic properties. The results show that: compared with the -O group, Ti3C2Tx with low proportion of -OH and -F groups have higher adsorption energy and weaker charge transfer for NO, which is not conducive to the detection of NO and consis-tent with the experimental results. However, with the increase of the -OH and -F proportion, the adsorption energy decreases and increases respectively, the charge transfer is enhanced and weakened respectively. This indicates that -OH groups of high proportion are favorable for Ti3C2Tx to detect NO, while a high proportion of -F is unfavorable. At the same time, the curvature of Ti3C2O2 becomes smaller at the extreme value of the band near the Fermi level, and the effective mass of the electron increases after NO adsorption. The result indicates that the -O group is beneficial for Ti3C2Tx to sense NO. In the process of geometric relaxation, NO molecule always uses N atom close to the substrate, and the adsorption distance is small. Moreover, the electron orbital of the nearest neighbor atom is hybridized, and the electron accumulation and dissipation are located at its two ends. The result indicates the bonds between the adsorbed nearest neighbor atoms are weak, and biased towards ions. The calculation results can provide theoretical guidance for Ti3C2Tx detection or shielding to NO, and also provide ideas for the surface modification of Ti3C2Tx.
Key words:  two-dimensional material    Ti3C2Tx    NO adsorption    density functional theory    electronic property
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  O469  
基金资助: 国家自然科学基金(51875091);2021 年南充市-西南石油大学市校科技战略合作项目(SXHZ008)
通讯作者:  *罗强,西南石油大学理学院教授、硕士研究生导师。2000年重庆大学应用物理专业本科毕业,2005年重庆大学凝聚态物理专业硕士毕业,目前主要从事凝聚态理论及纳米材料计算等方面的研究工作,发表论文50余篇,包括《物理学报》、Computational Materials Science、Chinese Physics B、Journal of Optoelectronics and Advanced Materials、Materials Research Innovations等。93414722@qq.com; luoqiang@swpu.edu.cn   
作者简介:  邱毅,西南石油大学理学院副教授、硕士研究生导师。2002年西南师范大学物理教育专业本科毕业,2011年四川大学电子信息工程学院光学专业博士毕业。目前主要从事材料物理计算、光学等方面的研究工作。发表论文20余篇,包括Nanoscale、Optics & Laser Technology、Optik、Journal of Nanoelectronics and Optoelectronics等。
引用本文:    
邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
QIU Yi, ZOU Jiangfeng, MA Zhiwei, LUO Qiang, LIU Zhonghua, CHEN Yang, DAI Yifei. First-principle Study on the Effect of Surface Groups on the Adsorption of NO by Ti3C2Tx. Materials Reports, 2024, 38(5): 22060163-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060163  或          http://www.mater-rep.com/CN/Y2024/V38/I5/22060163
1 Allsop T, Neal R. Sensors, 2021, 21(20), 6755.
2 Itoh T, Koyama Y, Shin W, et al. Sensors, 2020, 20(9), 2687.
3 Schmitt K, Tarantik K, Pannek C, et al. Chemosensors, 2018, 6(2), 14.
4 Aldhafeeri T, Tran M, Vrolyk R, et al. Inventions, 2020, 5(3), 28.
5 Zhang S R, Wang J H, Dong D M, et al. Advanced Materials Research, 2012, 629, 655.
6 Dong Q, Xiao M, Chu Z, et al. Sensors, 2021, 21(10), 3386.
7 Salih E, Ayesh A I. Physica E: Low-dimensional Systems and Nanostructures, 2021, 131, 114736.
8 Wei-Hao Li M, Ghosh A, Venkatasubramanian A, et al. ACS Sensors, 2021, 6(6), 2348.
9 Herman T, Nungesser E, Miller K E, et al. Energies, 2022, 15(4), 1538.
10 Fan Y, Hu X, Zhu R, et al. JOM, 2022, 74(3), 869.
11 Ferreira G R, Fidêncio P H, Castricini A, et al. Food Science and Technology, 2022, 42, e42321.
12 Gao W, Yang X, Zhu X, et al. Atmosphere, 2021, 12(2), 265.
13 Cho S H, Suh J M, Eom T H, et al. Electronic Materials Letters, 2021, 17(1), 1.
14 Srivastava S. Materials Today: Proceedings, 2021, 37, 3709.
15 Park S Y, Kim Y, Kim T, et al. InfoMat, 2019, 1(3), 289.
16 Hussan K P S, Moidu H H, Thayyil M S, et al. Journal of Materials Science: Materials in Electronics, 2021, 32(20), 25164.
17 Santonico M, Zompanti A, Sabatini A, et al. Sensors, 2020, 20(3), 668.
18 Wang G, Mulmi S, Thangadurai V. Ceramics International, 2021, 47(21), 30483.
19 Choi S, Kim I. Electronic Materials Letters, 2018, 14(3), 221.
20 Sabina D, Marcin P, Roksana M, et al. Sensors(Basel, Switzerland), 2020, 20(11), 3175.
21 Pham T K N, Brown J J. ChemistrySelect, 2020, 5(24), 7277.
22 Zhang J, Liu L, Yang Y, et al. Physical Chemistry Chemical Physics, 2021, 23(29), 15420.
23 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23(37), 4248.
24 Sun D D, Hu Q K, Chen J F, et al. Key Engineering Materials, 2014, 602-603, 527.
25 Riazi H, Taghizadeh G, Soroush M. ACS Omega, 2021, 6(17), 11103.
26 Mehdi Aghaei S, Aasi A, Panchapakesan B. ACS Omega, 2021, 6(4), 2450.
27 Tan D, Jiang C, Cao X, et al. RSC Advances, 2021, 11(31), 19169.
28 Gui J, Han L, Cao W. Journal of Applied Electrochemistry, 2021, 51(11), 1509.
29 Xin M, Li J, Ma Z, et al. Frontiers in Chemistry, 2020, 8, 297.
30 Jian Y, Qu D, Guo L, et al. Frontiers of Chemical Science and Enginee-ring, 2021, 15(3), 505.
31 Wu M, He M, Hu Q, et al. ACS Sensors, 2019, 4(10), 2763.
32 Kim S J, Koh H, Ren C E, et al. ACS Nano, 2018, 12(2), 986.
33 Hajian S, Khakbaz P, Moshayedi M, et al. In: IEEE SENSORS Confe-rence. New Delhi, India, 2018, pp. 1.
34 Soomro R A, Jawaid S, Zhu Q, et al. Chinese Chemical Letters, 2020, 31(4), 922.
35 Lee E, Vahidmohammadi A, Prorok B C, et al. ACS Applied Materials & Interfaces, 2017, 9(42), 37184.
36 Hope M A, Forse A C, Griffith K J, et al. Physical Chemistry Chemical Physics, 2016, 18(7), 5099.
37 Liu F, Zhou A, Chen J, et al. Applied Surface Science, 2017, 416, 781.
38 Carey M, Barsoum M W. Materials Today Advances, 2021, 9, 100120.
39 Chia H L, Mayorga-Martinez C C, Antonatos N, et al. Analytical Che-mistry, 2020, 92(3), 2452.
40 Szuplewska A, Kulpińska D, Dybko A, et al. Trends in Biotechnology, 2020, 38(3), 264.
41 Kong L, Liang X, Deng X, et al. Advanced Theory and Simulations, 2021, 4(7), 2100074.
42 Shanno D F, Kettler P C. Mathematics of Computation, 1970, 24(111), 657.
43 Broyden C G. Ima Journal of Applied Mathematics, 1970, 6(1), 76.
44 Goldfarb D. Mathematics of Computation, 1970, 24(109), 23.
45 Fletcher R. The Computer Journal, 1970, 13(3), 317.
46 Schneider W F, Hass K C, Miletic M, et al. The Journal of Physical Chemistry B, 2002, 106(30), 7405.
47 Sorescu D C, Rusu C N, Yates J T. The Journal of Physical Chemistry B, 2000, 104(18), 4408.
48 Huang K, Li Z, Lin J, et al. Chemical Society Reviews, 2018, 47(14), 5109.
49 Tian Q. College Physics, 1996, 15(7), 18(in Chinese).
田强. 大学物理, 1996, 15(7), 18.
[1] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[2] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[3] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[4] 邓晨晖, 韩立, 王岩, 高召顺, 牛耕. 二次电子产额影响因素的研究进展[J]. 材料导报, 2023, 37(24): 22030065-10.
[5] 杜辉, 陈巧, 刘婷, 贺毅, 金应荣. 非线性晶体和光电材料硒化镓的研究进展[J]. 材料导报, 2022, 36(5): 20080191-10.
[6] 曹青, 熊礼苗, 李鹏程. 二维忆阻材料及其阻变机理研究进展[J]. 材料导报, 2022, 36(21): 21040128-12.
[7] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[8] 张祎辰, 王肖剑, 张明锦, 冯晴亮. 二硫化铂的可控合成及应用研究进展[J]. 材料导报, 2022, 36(15): 21050167-12.
[9] 马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
[10] 李慧娟, 刘诗斌, 冯晴亮. 基于二维层状半导体材料的电化学传感器性能研究及应用进展[J]. 材料导报, 2022, 36(1): 20080298-10.
[11] 刘晓刚, 孙红, 刘林聪. 二维材料在摩擦机理和润滑应用方面的研究进展[J]. 材料导报, 2021, 35(z2): 33-37.
[12] 陈立杭, 张绫芷, 沈彩, 刘兆平. AFM峰值力轻敲模式下石墨烯与迈科烯结构稳定性的比较[J]. 材料导报, 2021, 35(22): 22006-22010.
[13] 李彬, 李娜, 黄一凡, 王强, 张晓东. 单粒子效应的激光模拟方法研究进展[J]. 材料导报, 2021, 35(21): 21195-21201.
[14] 刘后宝, 傅仁利, 苏新清, 陈旭东, 吴彬勇. MXene材料的结构、性能及在电磁屏蔽领域的应用[J]. 材料导报, 2021, 35(13): 13067-13074.
[15] 查林. D3-C32X2(X=H, Cl)的电子结构、核磁共振及振动光谱理论研究[J]. 材料导报, 2020, 34(Z1): 103-106.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed