Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 162-167    https://doi.org/10.11896/j.issn.1005-023X.2017.019.022
  吸附分离材料 |
桥连双亚胺介孔材料对Cr(Ⅵ)的吸附性能*
谢慧琳1, 胡文斌1,2, 龙湘南1, 贾振宇1, 刘其海1, 周新华1
1 仲恺农业工程学院化学化工学院,广州 510225;
2 中山大学惠州研究院,惠州 516081
Adsorption Properties of Double Imine Bridged Mesoporous Silica to Chromium(Ⅵ)
XIE Huilin1, HU Wenbin1,2, LONG Xiangnan1, JIA Zhenyu1, LIU Qihai1, ZHOU Xinhua1
1 College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225;
2 Huizhou Research Institute of Sun Yat-sen University, Huizhou 516081
下载:  全 文 ( PDF ) ( 1610KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以CTAB/PAANa为混合模板剂,正硅酸乙酯为硅源,自制双亚胺基桥连硅烷偶联剂为改性剂,采用共缩聚法制备了双亚胺桥连介孔硅材料PMOS。利用FTIR、XRD、N2吸附-脱附、固体核磁和TEM对PMOS材料的结构和形貌进行了表征,将其应用于对Cr(Ⅵ)的吸附,并系统考察了pH值、吸附剂用量和吸附时间对PMOS吸附Cr(Ⅵ)的影响,且重点探究了PMOS对Cr(Ⅵ)的吸附行为。结果表明,PMOS具有高度有序的介孔结构,其对Cr(Ⅵ)的最佳吸附条件为:pH=6,初始浓度为200 mg/L,吸附时间为8 h。PMOS对Cr(Ⅵ)的吸附遵循Langmuir模型,在45 ℃时,其对Cr(Ⅵ)的饱和吸附量为428.61 mg/g。此外,PMOS对Cr(Ⅵ)的吸附行为可用准二级动力学模型来描述,且PMOS与Cr(Ⅵ)之间的作用力主要为静电作用力和配位作用力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢慧琳
胡文斌
龙湘南
贾振宇
刘其海
周新华
关键词:  介孔硅  双亚胺  六价铬离子  吸附    
Abstract: The diimine bridged mesoporous silica (PMOS) was synthesized by copolycondensation method with CTAB/PAANa as mixed template, tetraethyl orthosilicate as silicon source and homemade silane coupling agent as modifier. The structure and morphology of PMOS materials were characterized by FTIR, XRD, BET, solid-state nuclear magnetic and TEM. The effects of pH value, mass rations of adsorbent and absorption time on adsorption for Cr(Ⅵ) were discussed. Besides, the adsorption behavior of PMOS for Cr(Ⅵ) was mainly investigated. The results showed that PMOS was highly ordered mesoporous structure. While pH=6, the concentration of initial solution was 200 mg/L, adsorption time was 8 h, the PMOS showed excellent adsorption for Cr(Ⅵ). The adsorption could be described by Langmuir model and pseudo-second order kinetics model. When the temperature was 45 ℃, the sa-turated adsorption for Cr(Ⅵ) was 428.61 mg/g. The force between PMOS and Cr(Ⅵ) is mainly electrostatic force and coordination force.
Key words:  mesoporous silica    double imine    chromium(Ⅵ) ion    adsorption
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  O647.3  
基金资助: *国家自然科学基金(21476272;21376280;21546003);广东省科技厅项目(2015A040404044);广东省自然科学基金(2015A030313595; 2015A030313599)
作者简介:  谢慧琳:女,1991年生,硕士研究生,研究方向为功能高分子材料 胡文斌:通讯作者,男,1963年生,博士,教授,主要研究方向为功能高分子材料、纳米材料等 E-mail:wbhu2000@163.com
引用本文:    
谢慧琳, 胡文斌, 龙湘南, 贾振宇, 刘其海, 周新华. 桥连双亚胺介孔材料对Cr(Ⅵ)的吸附性能*[J]. 《材料导报》期刊社, 2017, 31(19): 162-167.
XIE Huilin, HU Wenbin, LONG Xiangnan, JIA Zhenyu, LIU Qihai, ZHOU Xinhua. Adsorption Properties of Double Imine Bridged Mesoporous Silica to Chromium(Ⅵ). Materials Reports, 2017, 31(19): 162-167.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.022  或          http://www.mater-rep.com/CN/Y2017/V31/I19/162
1 Dehghani M H, Sanaei D, Ali I, et al. Removal of chromium(Ⅵ) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies[J]. J Molecular Liquids,2016,215:671.
2 Li Z Y, Hu S. Removal of hexavalent chromium from aqueous solutions by ion-exchange resin[J]. Adv Mater Res,2012,550-553:2333.
3 Park D, Yun Y, Kim J Y, et al. How to study Cr(Ⅵ) biosorption: Use of fermentation waste for detoxifying Cr(Ⅵ) in aqueous solution[J]. Chem Eng J,2008,136(2-3):173.
4 Sanchez J, Rivas B L. Cationic hydrophilic polymers coupled to ultrafiltration membranes to remove chromium(Ⅵ) from aqueous solution[J]. Desalination,2011,279(1):338.
5 Goharshadi E K, Moghaddam M B. Adsorption of hexavalent chromium ions from aqueous solution by graphene nanosheets: Kinetic and thermodynamic studies[J]. Int J Environmental Sci Technol,2015,12(7):2153.
6 Maleki A, Hayati B, Naghizadeh M, et al. Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution[J]. J Ind Eng Chem,2015,28:211.
7 Timin A, Rumyantsev E, Solomonov A. Synthesis and application of amino-modified silicas containing albumin as hemoadsorbents for bilirubin adsorption[J]. J Non-Crystalline Solids,2014,385:81.
8 Ge K, Zhang C, Jia G, et al. Defect-related luminescent mesoporous silica nanoparticles employed for novel detectable nanocarrier[J]. ACS Appl Mater Interfaces,2015,7(20):10905.
9 Chen T, Wang T, et al. Selective adsorption behavior of Cu(Ⅱ) and Cr(Ⅵ) heavy metal ions by functionalized ordered mesoporous carbon[J]. Acta Phys-Chim Sin,2010,26(12):3249(in Chinese).
陈田,王涛,等. 功能化有序介孔碳对重金属离子Cu(Ⅱ)、Cr(Ⅵ)的选择性吸附行为[J]. 物理化学学报,2010,26(12):3249.
10 Munoz B, Ramila A, Perez P J, et al. MCM-41 organic modification as drug delivery rate regulator[J]. Chem Mater,2003,15(2):500.
11 Ozdemir O. Novel symmetric diimine-Schiff bases and asymmetric triimine-Schiff bases as chemosensors for the detection of various metal ions[J]. J Molecular Structure,2016,1125:260.
12 Dobrowolski R, Oszust-Cieniuch M, et al. Amino-functionalized SBA-15 mesoporous silicas as sorbents of platinum (Ⅳ) ions[J]. Colloids Surf A: Physicochem Eng Aspects,2013,435:63.
13 Liu B, Fang M, Jie S, et al. Nickel(Ⅱ) α-diimine catalysts with carboxyl groups for ethylene oligomerization and polymerization[J]. Chin J Polym Sci,2016,34(2):221.
14 Meng X J, Xie B, Xiao F S. Organotemplate-free routes for synthesizing zeolites[J]. Chin J Catal,2009,30(9):965(in Chinese).
孟祥举,谢彬,肖丰收. 无有机模板剂条件下合成沸石催化材料[J]. 催化学报,2009,30(9):965.
15 Liu L, Zhang G Y, Dong J X. Effects of different templating agent on the structure of silica MCM-41 mesoporous molecular sieves[J]. Acta Phys-Chim Sin,2004,20(1):65(in Chinese).
刘雷,张高勇,董晋湘. 模板剂对全硅MCM-41介孔分子筛结构的影响[J]. 物理化学学报,2004,20(1):65.
16 Chandra D, Bhaumik A. Highly active 2D hexagonal mesoporous titanium silicate synthesized using a cationic-anionic mixed-surfactant assembly[J]. Ind Eng Chem Res,2006,45(14):4879.
17 Wang J J, Lu J M, Yang J H, et al. Synthesis of mesoporous MCM-48 molecular sieves with cationic and anionic mixed surfactant system as template[J]. Petrochem Technol,2013,42(5):506(in Chinese).
王静静,鲁金明,杨建华,等. 阴阳离子表面活性剂混合模板剂合成介孔MCM-48分子筛[J]. 石油化工,2013,42(5):506.
18 Verani C N, et al. Exchange coupling in a bis(heterodinuclear) [CuNi]2 and a linear heterotrinuclear complex CoCuNi. Synthesis, structures and properties[J]. Dalton Trans,2000(3):251.
19 Hao S Y, Xiao Q, Zhong Y J, et al. One-pot synthesis of amino-functionalized SBA-15 and their CO2-adsorption properties[J]. Chin J Inorg Chem,2010,26(6):982(in Chinese).
郝仕油,肖强,钟依均,等. 氨基功能化SBA-15的直接合成及其对CO2的吸附性能研究[J]. 无机化学学报,2010,26(6):982.
20 Wang X H, Zhu G R, Gao C J. Adsorption of uranium (Ⅵ) on silica mesoporous material SBA-15 with short channels[J]. CIESC J,2013,64(7):2480(in Chinese).
王兴慧,朱桂茹,高从堦. 短孔道介孔二氧化硅SBA-15对铀的吸附性能[J]. 化工学报,2013,64(7):2480.
21 Shi B. Analysis of existing forms of Cr6+ in waste water[J]. Electroplating Pollution Control,1986,6(4):30(in Chinese).
施波. 废水中六价铬的存在形态分析[J]. 电镀与环保,1986,6(4):30.
22 ManjuladeⅥ M, Manonmani S. Removal of hexavalent chromium ions from aqueous solution by adsorption using activated carbon prepared from cucumis melo peel activated carbon[J]. Oriental J Chem,2015,31(1):531.
23 Yang J, et al. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics[J]. J Ind Eng Chem,2015,21:414.
24 Zhang S J, Xing B L, Huang G X, et al. A study on adsorption of Cr(Ⅵ) by hydrothermal carbon from walnut shell[J]. Chem Ind Eng Prog,2016,35(3):950(in Chinese).
张双杰,邢宝林,黄光许,等. 核桃壳水热炭对六价铬的吸附特性[J]. 化工进展,2016,35(3):950.
25 Zhu W J, Li M M, Ma W H, et al. Synthesis of MCM-41 mesoporous sieves and their adsorption performance of Cu2+[J]. Chin J Environmental Eng,2014,8(2):513(in Chinese).
朱文杰,李明明,马文会,等. MCM-41介孔分子筛的合成及其对铜离子的吸附性能[J]. 环境工程学报,2014,8(2):513.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[4] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[5] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[6] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[7] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[10] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[11] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[12] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[13] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 王龙江, 李永国, 俞杰, 樊惠玲, 吴波, 韩丽红, 李彦樟, 乔太飞. 三维有序大孔铜基吸附剂的制备及除碘性能[J]. 材料导报, 2019, 33(4): 660-664.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed