Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 51-57    https://doi.org/10.11896/j.issn.1005-023X.2018.01.006
  物理   材料综述 |材料 |
铁酸锌作为光催化剂的研究进展
侯桂芹1,2(),李云凯1,王晓燕2
1 北京理工大学材料学院,北京100081
2 华北理工大学轻工学院,唐山 063000
Research Progress of Zinc Ferrite as Photocatalyst
Guiqin HOU1,2(),Yunkai LI1,Xiaoyan WANG2
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
2 Qing Gong College, North China University of Science and Technology, Tangshan 063000
下载:  全 文 ( PDF ) ( 1187KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

铁酸锌是具有较高光催化活性及对可见光敏感的n型半导体,其独特的磁性能和化学稳定性使其在光催化领域有着广泛的应用。针对不同形貌的铁酸锌,采用不同的改性方法,可将其与其他材料结合制备出更为高效、实用的光催化剂。近年来,利用铁酸锌的特性,制备磁性可回收且性能稳定的复合光催化剂引起了科研人员的广泛关注。概述了铁酸锌作为光催化剂的基本性质,对不同形貌铁酸锌的制备方法进行了总结,并重点讨论了铁酸锌在光催化方面的改性技术及改性机理,最后对目前存在的问题和未来的研究方向做了简要的总结和预测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯桂芹
李云凯
王晓燕
关键词:  铁酸锌  形貌  改性  光催化    
Abstract: 

Zinc ferrite is a n-type semiconductor with high photocatalytic activity and visible light sensitive, the unique magnetic properties and chemical stability make it widely used in the field of photocatalysis. For various morphology of zinc ferrite, different modification methods can be taken to make it more efficient and practical. In recent years, taking advantage of the zinc ferrite characteristics, the preparation of magnetic recovery and stable performance of the composite photocatalyst has attracted the attention of researchers. In this paper, the basic properties of zinc ferrite as photocatalyst and the preparation methods of various morphology are introduced. The modification technology and modification mechanism of zinc ferrite in photocatalysis are discussed. At the same time, the existing problems and prospects are pointed out.

Key words:  ZnFe2O4    morphology    modification    photocatalysis
               出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TB34  
作者简介:  侯桂芹:女,1980年生,博士研究生,讲师,主要从事光催化材料的研究 E-mail: 283636899@qq.com
引用本文:    
侯桂芹,李云凯,王晓燕. 铁酸锌作为光催化剂的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 51-57.
Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst. Materials Reports, 2018, 32(1): 51-57.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.006  或          http://www.mater-rep.com/CN/Y2018/V32/I1/51
图1  (a) ZnFe2O4的晶体结构,氧离子构成的(b)四面体单元和(c)八面体单元
图2  ZnFe2O4光催化机理示意图
图3  溶液燃烧法制备的ZnFe2O4的TEM 及HRTEM 图
图4  (a)ZnFe2O4纳米棒的磁滞回线和(b)多孔纳米棒铁酸锌的形貌图
图5  (a)花状和(b)片状铁酸锌的SEM图
图6  (a)铁酸锌纳米线扫描电镜图;(b)铁酸锌纳米管扫描电镜图
图7  中空 ZnFe2O4微球的制备过程和形成机理
Morphologies Preparation
method
Catalyst
dosage
Degradation
dyes
Degradation
time
Photocatalytic
activity
Bulk Solution combustion synthesis 0.1 g, 21.9 nm 100 mL, 10 mg/L
RhB
300 W, Xe
lamp,2 h
61.3%
Porous
nanorods
Template-surfactant-free
solvothermal method
100 mg, diameters of 100—
200 nm and lengths of
several micrometers
100 mL, 5 mg/L
MB
Sunlight,April,
10∶00—16∶00
85%
Floriated Mild hydrothermal and calcination
processes by using CTABr as a
template-directing reagent
100 mg, average length of
122 nm and diameter of
29 nm
80 mL water and
20 mL methanol
250 W,
Xe lamp, 5 h
237.87(mmol·g)/L
Flaky Mild hydrothermal and
calcination processes
100 mg 80 mL water and
20 mL methanol
250 W,
Xe lamp, 5 h
87.40(mmol·g)/L
Nanotube Anodic aluminum oxide templates
from sol-gel solution
Average diameter of
approximately 200 nm
100 mL, 10 mg/L,
4-CP
500 W,
Xe lamp, 6 h
100%
表1  不同形貌铁酸锌的制备方法及其光催化活性
图8  光照作用下不同半导体光催化剂之间的复合示意图
[1] Doh S J, Kim C, Lee S G , et al. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants[J]. Journal of Hazardous Materials, 2008,154(1-3):118.
[2] Kyung H, Lee J . Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination[J]. Environmental Science and Technology, 2005,39:2376.
[3] Liu Z Y, Bai H W, Sun D R . Facile fabrication of hierarchical porous TiO2 hollow microspheres with high photocatalytic activity for water purification[J]. Applied Catalysis B: Environmental, 2011,104(3-4):234.
[4] Mady A H, Baynosa M L, Tumac D , et al. Facile microwave-assisted green synjournal of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV-and visible-light irradiation[J]. Applied Catalysis B: Environmental, 2017,203:416.
[5] Wang J N, Yang G R, Wang L , et al. Fabrication of the ZnFe2O4 fiber-in-tube and tubular meso porous nanostructures via single-spinneret electrospinning: Characterization, mechanism and performance as anodes for Li-ion batteries[J]. Electrochimica Acta, 2016,222:1176.
[6] Nambissan P M G, Upadhyay C, Verma H C . Positron lifetime spectroscopy studies of nanocrystalline ZnFe2O4[J]. Journal of Applied Physics, 2003,93(10):6320.
[7] Li Z H, Zou X, Li G . Preparation and photovoltaic properties of p-type nano-ZnFe2O4[J]. Journal of Chemical Research in Chinese Universities, 2012,28(4):712.
[8] Rahman M M, Khana S B, Faisal M, et al. Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods[J]. Sensors and Actuators B: Chemical , 2012, 171- 172:932.
[9] Shim J H, Lee S, Park J H , et al. Coexistence of ferrimagnetic and antiferromagnetic ordering in Fe-inverted zinc ferrite investigated by NMR[J]. Physical Review B, 2006,73(6):064404.
[10] LiuH, Wei Y, Zhang Y F , et al. Study on the preparation of nanometer zinc ferrite Journal of Inorganic Materials, 2002,17(1):56(in Chinese).
[10] 刘辉, 魏雨, 张艳峰 , 等. 纳米铁酸锌的制备研究[J]. 无机材料学报, 2002,17(1):56.
[11] ZhuM Y, Liu H, Wei Y . Preparation of nano scale zinc ferrite by hydrogen peroxide and its properties Inorganic Chemicals Industry, 2007,39(8):19(in Chinese).
[11] 朱梅英, 刘辉, 魏雨 . 由氢氧化氧铁制备纳米级铁酸锌及产物性质研究[J]. 无机盐工业, 2007,39(8):19.
[12] ZhanS H, Gong C R, Chen D R , et al. Preparation of ZnFe2O4 nanofibers by sol-gel related electrospinning method[J]. Journal of Dispersion Science and Technology, 2006,27(7):931.
[13] ChenX J, Dai Y Z, Huang W K . Novel Ag3PO4/ZnFe2O4 composite photocatalyst with enhanced visible light photocatalytic activity[J]. Materials Letters, 2015,145:125.
[14] SeisukeN, Koji F, Katsuhisa T , et al. High magnetization and the high-temperature superparamagnetic transition with intercluster interaction in disordered zinc ferrite thin film[J]. Journal of Physics: Condensed Matter, 2005,17(1):137.
[15] KazantsevaN E, Bespyatykh Y I, Sapurina I , et al. Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating[J]. Journal of Magnetism and Magnetic Materials, 2006,301(1):155.
[16] YangJ L, Xu M, Luo M X , et al. Research of preparation zinc ferrite from leaching zinc calcine[J].Multipurpose Utilization of Mineral Resources, 2017(1):97(in Chinese).
[16] 杨金林, 徐明, 罗美秀 , 等. 锌焙砂浸出制备铁酸锌研究[J]. 矿产综合利用, 2017(1):97.
[17] XuQ Q, Feng J T, Li L C . Hollow ZnFe2O4/TiO2 composites: High-performance and recyclable visible-light photocatalyst[J]. Journal of Alloys and Compounds, 2015,641:110.
[18] WangY N, Weng D H, Fang T , et al. Research progress on nanometer zinc ferrite photocatalytic degradation of industrial wastewater Guangzhou Chemical Industry, 2017,45(6):17(in Chinese).
[18] 王雅楠, 翁德辉, 方涛 , 等. 纳米铁酸锌光催化降解工业废水研究进展[J]. 广州化工, 2017,45(6):17.
[19] GaoH R, Song S T . Preparation of sol-gel and its photocatalytic properties of zinc ferrite Journal of Hebei Normal University of Science and Technology, 2014,28(2):69(in Chinese).
[19] 高贺然, 宋士涛 . 铁酸锌的凝胶-溶胶制备及其光催化性能[J]. 河北科技师范学院学报, 2014,28(2):69.
[20] LiF T, Li Y L, Liu R H . Rapid combustion synjournal of ZnFe2O4 and its photocatalytic activity synjournal experimental design Experimental Technology and Management, 2016,33(5):28(in Chinese).
[20] 李发堂, 李义磊, 刘瑞红 . 纳米ZnFe2O4快速燃烧合成及其光催化活性综合实验设计[J]. 实验技术与管理, 2016,33(5):28.
[21] CaiC, Zhang Z Y, Liu J , et al. Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange Ⅱ in water[J]. Applied Catalysis B: Environmental , 2016,182:456.
[22] HabibiM H, Habibi A H, Zendehdel M , et al. Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: Effect of composite precursors and titania as a blocking layer on photovoltaic performance[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013,110:226.
[23] TabariT, Singh D, Jamali S S . Enhanced photocatalytic activity of mesoporous ZnFe2O4 nanoparticles towards gaseous benzene under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2017,5:931.
[24] SunB, Zhang X, Zhou G D , et al. Effect of Cu ions assisted conductive filament on resistive switching memory behaviors in ZnFe2O4-based devices[J]. Journal of Alloys and Compounds, 2017,694:464.
[25] ZhouY W, Fang S S, Zhou M , et al. Fabrication of novel ZnFe2O4/BiOI nanocomposites and its efficient photocatalytic activity under visible-light irradiation[J]. Journal of Alloys and Compounds, 2017,696:353.
[26] 26Abu-Hani A F, Mahmoud S T, Awwad F , et al. Design fabrication, and characterization of portable gas sensors basedon spinel ferrite nanoparticles embedded in organic membranes[J]. Sensors and Actuators B, 2017,241:1179.
[27] ZamiriR, Salehizadeh S A, Ahangar H A , et al. Optical and magnetic properties of ZnO/ZnFe2O4 nanocomposite[J]. Materials Chemistry and Physics, 2017,192:330.
[28] SongZ W, Li X Y, Wu X L . Synjournal and characterization of strontium titanate nanocrystalline photocatalysts Experimental Technology and Management, 2013,30(9):47(in Chinese).
[28] 宋祖伟, 李旭云, 吴秀玲 . 钛酸锶纳米晶光催化剂合成及表征综合实验设计[J]. 实验技术与管理, 2013,30(9):47.
[29] SuX T, Yan Q Z, Ge C C . A new study on the synjournal of ultrafine ceramic powders by low temperature combustion Progress in Chemistry, 2005,17(3):430(in Chinese).
[29] 宿新泰, 燕青芝, 葛昌纯 . 低温燃烧合成超细陶瓷微粉的最新研究[J]. 化学进展, 2005,17(3):430.
[30] LiF T, Ran J R, Jaroniec M , et al. Solution combustion synjournal of metal oxide nanomaterials for energy storage and conversion[J]. Nanoscale, 2015,7:17590.
[31] WeiZ Q, Zhang L L, Zhang G , et al. Preparation and properties of ZnFe2O4 nanorods Journal of Synthetic Crystals, 2014,43(4):820(in Chinese).
[31] 魏智强, 张玲玲, 张歌 , 等. ZnFe2O4纳米棒的制备和性能研究[J]. 人工晶体学报, 2014,43(4):820.
[32] JiaZ G, Ren D P, Liang Y C , et al. A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity[J]. Materials Letters, 2011,65:3116.
[33] LvH J, Ma L, Zeng P , et al. Synjournal of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light[J]. Journal of Materials Chemistry, 2010,20:3665.
[34] GaoD Q, Shi Z H, Xu Y , et al. Synjournal, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays[J]. Nanoscale Research Letters, 2010,5:1289.
[35] LiX Y, Hou Y, Zhao Q D , et al. Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol[J]. Chemosphere, 2011,82:581.
[36] ZhangJ, Zhang L X . Photocatalytic properties and preparation of hollow zinc ferrite nano materials Modern Chemical Industry, 2015,35(2):91(in Chinese).
[36] 张嘉, 张立新 . 中空铁酸锌纳米材料的制备及其光催化性能[J]. 现代化工, 2015,35(2):91.
[37] ChenX J, Dai Y Z, Liu T H , et al. Magnetic core-shell carbon microspheres (CMSs)@ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2015,409:198.
[38] LuF, Meng F M . Research evolution of doping modification on TiO2 photocatalyst Bulletin of the Chinese Ceramic Society, 2011,30(1):116(in Chinese).
[38] 鲁飞, 孟凡明 . TiO2光催化剂掺杂改性研究进展[J]. 硅酸盐通报, 2011,30(1):116.
[39] NuLiY N, Chu Y Q, Qin Q Z . Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2003,151(7):A1077.
[40] JiangY, Song W L, Xie C S , et al. Preparation and gas sensitivity of V doped ZnFe2O4 nanoparticles Rare Metal Materials and Engineering, 2006,35(4):617(in Chinese).
[40] 蒋勇, 宋武林, 谢长生 , 等. V掺杂纳米ZnFe2O4的制备及气敏性研究[J]. 稀有金属材料与工程, 2006,35(4):617.
[41] ChenT. Study on synthesizing and characterizing of zic ferrite nanoparticles[D]. Suzhou: Soochow University, 2012(in Chinese).
[41] 陈婷立 . 纳米铁酸锌(ZnFe2O4)的制备及其性能的研究[D]. 苏州:苏州大学, 2012.
[42] ZawarS, Atiq S, Riaz S , et al. Correlation between particle size and magnetic characteristics of Mn-substituted ZnFe2O4 ferrites[J]. Superlattices and Microstructures, 2016,93:50.
[43] LinJ, Jia Z B, Weng C D . Dispersion of nano-zinc ferrite Guangdong Chemical Industry, 2012,39(4):68(in Chinese).
[43] 林健, 贾振斌, 翁创达 . 纳米铁酸锌的分散[J]. 广东化工, 2012,39(4):68.
[44] XiaoX X, He Q Q, Cai J W , et al. Surface modification of nano zinc ferrite (ZnFe2O4) Fine Chemical Intermediates, 2007,37(3):51(in Chinese).
[44] 肖旭贤, 何琼琼, 蔡婧文 , 等. 纳米铁酸锌(ZnFe2O4)的表面改性[J]. 精细化工中间体, 2007,37(3):51.
[45] 王梦晔, 蔡建怀, 孙岚 , 等. ZnFe2O4修饰的TiO2纳米管阵列电极的制备及光催化性能[C]∥ 第十三届全国太阳能化学与光催化学术会议. 武汉, 2012.
[46] ShahidAmeer, Iftikhar Hussain Gul, Nasir Mahmood , et al. Synjournal, characterization and optical properties of in situ ZnFe2O4 functionalized rGO nano hybrids through modified solvothermal approach[J]. Optical Materials, 2015,45:69.
[47] FengJ, Wang Y T, Zou L Y , et al. Synjournal of magnetic ZnO/ZnFe2O4 by a microwave combustion method, and its high rate of adsorption of methylene blue[J]. Journal of Colloid and Interface Science, 2015,438:318.
[48] QiS Y, Zhao B C, Wu C , et al. Investigation on the preparation and photocatalytic properties study of ZnO/ZnFe2O4 Journal of Harbin University of Science and Technology, 2017,22(2):7(in Chinese).
[48] 亓淑艳, 赵博超, 吴超 , 等. 复合材料的光催化性能的研究[J]. 哈尔滨理工大学学报, 2017,22(2):7.
[49] Ran F, Mao W X, Zhao Q Y , et al. Preparation and photocatalytic properties of ZnFe2O4/polyaniline composites Journal of Zhejiang Normal University(Natural Science), 2017,40(1):64(in Chinese).
[49] 冉方, 冒卫星, 赵巧云 , 等. ZnFe2O4/聚苯胺复合材料的制备及光催化性能[J]. 浙江师范大学学报(自然科学版), 2017,40(1):64.
[50] KulkarniS D, Kumbar S, Menon S G , et al. Magnetically separable core-shell ZnFe2O4@ZnO nanoparticles for visible light photodeg-radation of methyl orange[J]. Materials Research Bulletin, 2016,77:70.
[51] HouG Q, Li Y K, An W J , et al. Fabrication and photocatalytic activity of magnetic core@shell ZnFe2O4@Ag3PO4 heterojunction[J]. Materials Science in Semiconductor Processing, 2017,63:261.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[3] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[4] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[5] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[6] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[7] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[8] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[9] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[10] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[11] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[12] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[13] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[14] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[15] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed