Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 22010004-11    https://doi.org/10.11896/cldb.22010004
  生物医用材料 |
有机室温磷光材料在生物医学中的应用
丁梅鹃, 史慧芳, 安众福
南京工业大学先进材料研究院,南京 211816
Organic Room Temperature Phosphorescent Materials for Biomedical Applications
DING Meijuan, SHI Huifang, AN Zhongfu
Institution of Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
下载:  全 文 ( PDF ) ( 12671KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,纯有机室温磷光(RTP)材料由于具有长的激发态寿命、大的Stokes位移、丰富的激发态性质等特点而备受研究者的广泛关注。相较于重金属配合物或无机磷光材料,有机磷光材料的原料来源广、成本低、合成条件温和,兼具质轻、柔性、可大面积制备等诸多优势,室温磷光材料在数据加密、传感、有机电致发光、生物成像等领域展现出良好的应用前景。
有机磷光材料具有长寿命发光和三线态发射的特征,利用时间分辨技术能有效扣除生物组织自身的背景荧光干扰,极大地提高生物传感和成像的灵敏度与信噪比,并通过与三线态氧气的TTA过程,有望实现这类材料在光动力抗癌与抗菌等生物领域的应用。而且纯有机磷光材料不存在重金属元素的毒性问题。因此,纯有机磷光材料在生物成像、癌症治疗等生物领域实现很好的应用。本文总结了近年来有机室温磷光在生物应用中的研究进展,包括生物成像、生物传感、光动力抗癌、抗菌等。最后,提出该领域尚待解决的问题并展望未来前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁梅鹃
史慧芳
安众福
关键词:  有机室温磷光  纳米材料  生物成像    
Abstract: In recent years, pure organic room temperature phosphorescent (RTP) materials have received extensive attention from researchers due to their long-excited state lifetime, large Stokes shift, and rich excited state properties. Compared with heavy metal complexes or inorganic phosphorescent materials, organic phosphorescent materials have a wide range of raw materials, low cost, mild synthesis conditions, light weight, flexibility, large area preparation, and many other advantages. Thus, RTP materials show great potential in the field of data encryption, sensing, organic electroluminescence, biological imaging and others.
Organic phosphorescent materials have the characteristics of long-lived luminescence and triplet emission. The use of time-resolved technology can effectively eliminate the background fluorescence interference of biological tissues, which greatly improves the sensitivity and signal-to-noise ratio of biosensing and imaging. And through the TTA process with triplet oxygen, it is expected to realize the application of such materials in biological fields such as photodynamic anticancer and antibacterial. Moreover, pure organic phosphorescent materials do not have the toxicity from heavy metals. Therefore, pure organic phosphorescent materials have achieved good applications in biological fields such as biological imaging and cancer treatment. In this review, we summarized the research progress of organic room temperature phosphorescence in biological applications, including bioimaging, biosensing, photodynamic anticancer, antibacterial, etc. Finally, we propose the problems and outlook in this field.
Key words:  organic room temperature phosphorescence    nanomaterials    bioimaging
发布日期:  2022-02-10
ZTFLH:  O621.2  
基金资助: 国家自然科学基金(21975120;21875104)
通讯作者:  iamhfshi@njtech.edu.cn   
作者简介:  丁梅鹃,2018年6月毕业于巢湖学院,获得工学学士学位。现为南京工业大学先进材料研究院博士研究生,在安众福教授的指导下进行研究。目前主要研究领域为室温有机磷光材料。
史慧芳,南京工业大学先进材料研究院教授。2008年毕业于青岛科技大学,获理学、文学双学士学位;2008—2013年在南京邮电大学与新加坡国立大学联合培养,获工学博士学位;同年赴新加坡南洋理工大学从事博士后研究。2015年7月加入南京工业大学先进材料研究院,从事有机光电功能材料的研究。研究成果先后以第一作者或通讯作者身份发表在Nature Photonics、Nature Communications、Angewandte Chemie International Edition等国际顶级学术期刊上。目前,已发表SCI论文60余篇,其中第一作者(含共同第一作者)与通讯作者论文32篇。申请中国发明专利8项,授权3项。主持国家自然科学基金青年项目、面上项目等。
安众福,南京工业大学先进材料研究院教授、博士研究生导师。2014年获得南京邮电大学博士学位; 2014年5月赴新加坡国立大学化学系从事博士后研究;2015年加入南京工业大学先进材料研究院,主要研究方向是有机光电材料与器件。截至目前,以第一作者或通讯作者身份在Nature Materials、Nature Photonics、Nature Communications等顶级学术期刊上共发表SCI收录论文80余篇。多次受邀参加国内外学术会议。公开或授权发明专利9项。主持国家自然科学基金面上项目、江苏省自然科学基金杰出青年基金等,入选江苏省“六大人才高峰”高层次人才计划与江苏省“333高层次人才培养工程”培养对象。获教育部高等学校科学研究优秀成果奖自然科学奖一等奖、首届京博科技进步奖、江苏省优秀博士学位论文等。
引用本文:    
丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
DING Meijuan, SHI Huifang, AN Zhongfu. Organic Room Temperature Phosphorescent Materials for Biomedical Applications. Materials Reports, 2022, 36(3): 22010004-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010004  或          http://www.mater-rep.com/CN/Y2022/V36/I3/22010004
1 Mukherjee S, Thilagar P. Chemical Communications, 2015, 51, 10988.
2 Gu L, Shi H F, Gu M X, et al. Angewandte Chemie International Edition, 2018, 57, 8425.
3 Wang X, Ma H L, Gu M Xi, et al. Chemistry of Materials, 2019, 31, 5584.
4 Wei J B, Liang B Y, Duan R H, et al. Angewandte Chemie International Edition, 2016, 55, 15589.
5 Yang Z Y, Mao Z, Zhang X P, et al. Angewandte Chemie International Edition, 2016, 55, 2181.
6 Lee D, Jung J H, Bilby D, et al. ACS Applied Materials Interfaces, 2015, 7, 2993.
7 Yu Y C, Kwon M S, Jung J H, et al. Angewandte Chemie International Edition, 2017, 56, 16207.
8 Wu Q, Ma H L, Ling K, et al. ACS Applied Materials Interfaces, 2018, 10, 33730.
9 De Rosa C A, Seaman S. A, Mathew A. S, et al. ACS Sensors, 2016, 1, 1366.
10 Kabe R, Notsuka N, Yoshida K, et al. Advanced Materials, 2016, 28, 655.
11 Chen W C, Yuan Y, Zhu Z L, et al. Chemical Communications, 2018, 54, 4541.
12 Wang J X, Liang J X, Xu Y C, et al. Journal of Physical Chemistry Letters, 2019, 10, 5983.
13 Wang T, Su X G, Zhang X P, et al. Advanced Materials, 2019, 31, 1904273.
14 Yu Z Y, Wu Y S, Xiao L, et al. Journal of the American Chemical Society, 2017, 139, 6376.
15 Hirata S,Vacha M. Journal of Physical Chemistry Letters, 2016, 7, 1539.
16 Evans R C, Douglas P, Winscom C. J. Coordination Chemistry Reviews, 2006, 250, 2093.
17 Zhang K Y, Gao P L, Sun G L, et al. Journal of the American Chemical Society, 2018, 140, 7827.
18 Xu H, Chen R F, Sun Q, et al. Chemical Society Reviews, 2014, 43, 3259.
19 Schulman E M, Parker R T. Journal of Physical Chemistry Letters, 1977, 81,1932.
20 Shi H F, An Z F, Li P Z, et al. Crystal Growth Design, 2016, 16, 808.
21 Shi H F, Song L L, Ma H L, et al. Journal of Physical Chemistry Letters, 2019, 10, 595.
22 Cai S Z, Shi H F, Tian D, et al. Advanced Functional Materials, 2018, 28, 1705045.
23 An Z F, Zheng C, Tao Y, et al. Nature Materials, 2015, 14, 685.
24 Shoji Y, Ikabata Y, Wang Q, et al. Journal of the American Chemical Society, 2017, 139, 2728.
25 Jia X Y, Shao C C, Bai X, et al. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4816.
26 Zhao W J, He Z K, Lam J W Y, et al. Chemistry, 2016, 1, 592.
27 Gong Y Y, Chen G, Peng Q, et al. Advanced Materials, 2015, 27, 6195.
28 Hirata S, Totani K, Zhang J X, et al. Advanced Functional Materials, 2013, 23, 3386.
29 Gan N, Shi H F, An Z F, et al. Advanced Functional Materials, 2018, 28,1802657.
30 Lei Y X, Dai W B, Tian Y, et al. Journal of Physical Chemistry Letters, 2019, 10, 6019.
31 Jinnai K, Kabe R, Adachi C. Advanced Materials, 2018, 30, 1800365.
32 Yuan W Z, Shen X Y, Zhao H, et al. The Journal of Physical Chemistry C, 2010, 114, 6090.
33 Bolton O, Lee K, Kim H J, et al. Nature Chemistry, 2011, 3, 205.
34 Gong Y Y, Zhao L F, Peng Q, et al. Chemical Science, 2015, 6, 4438.
35 Cai S Z, Shi H F, Zhang Z Y, et al. Angewandte Chemie International Edition, 2018, 57, 4005.
36 Bian L F, Shi H F, Wang X, et al. Journal of the American Chemical Society, 2018, 140, 10734.
37 Yang X G, Yan D P. Chemical Science, 2016, 7, 4519.
38 Zhao W J, He Z K, Tang B Z. Nature Reviews Materials, 2020, 5, 869.
39 Gu L, Shi H F, Bian L F, et al. Nature Photonics, 2019, 13, 406.
40 Sun Z, Snoke D W. Nature Photonics, 2019,13, 370.
41 Li C Y, Wang Q B. ACS Nano, 2018, 12, 9654.
42 Zhang K Y, Yu Q, Wei H J, et al. Chemical Reviews, 2018, 118, 1770.
43 Shi H F, Sun H B, Yang H R, et al. Advanced Functional Materials, 2013, 23, 3268.
44 Kenry, Chen C J, Liu B. Nature Communications, 2019, 10, 2111.
45 Zhen X, Tao Y, An Z F, et al. Advanced Materials, 2017, 29, 1606665.
46 Cai S Z, Shi H F, Li J W, et al. Advanced Materials, 2017, 29, 1701244.
47 Palner M, Pu K Y, Shao S, et al. Angewandte Chemie International Edition, 2015, 54, 11477.
48 He Z H, Gao H Q, Zhang S T, et al. Advanced Materials, 2019, 31, 1807222.
49 Nicol A, Kwok R T K, Chen C P, et al. Journal of the American Chemical Society, 2017, 139, 14792.
50 Xiao L, Fu H B. Chemistry A European Journal, 2019, 25, 714.
51 Xu S, Chen R F, Zheng C, et al. Advanced Materials, 2016, 28, 9920.
52 Hirata S. Advanced Optical Materials, 2017, 5, 1700116.
53 Forni A, Lucenti E, Botta C, et al. Journal of Materials Chemistry C, 2018, 6, 4603.
54 Li Y, Gecevicius M, Qiu J R. Chemical Society Reviews, 2016, 45, 2090.
55 Zhang G Q, Palmer G M, Dewhirst M W, et al. Nature Materials, 2009, 8, 747.
56 De Rosa C A, Kosicka J S, Fan Z Y, et al. Macromolecules, 2015, 48, 2967.
57 Wahsner J, Gale E M, Rodríguez-Rodríguez A, et al. Chemical Reviews, 2019, 119, 957.
58 Yang J, Gao H Q, Wang Y S, et al. Materials Chemistry Frontiers, 2019, 3, 1391.
59 Yang J, Zhen X, Wang B, et al. Nature Communications, 2018, 9, 840.
60 Zhang T T, Gao H Q, Lv A Q, et al. Journal of Materials Chemistry C, 2019, 7, 9095.
61 You Y Q, Huang K W, Liu X J, et al. Small, 2020, 16, 1906733.
62 Zhou Y D, Lu S, Zhi J H, et al. Analytical Chemistry, 2021, 93, 6516.
63 Gao H Q, Gao Z Y, Jiao D, et al. Small, 2021, 17, 2005449.
64 Wang Y S, Gao H Q, Yang J, et al. Advanced Materials, 2021, 33, 2007811.
65 Kuno S, Akeno H, Ohtani H, et al. Physical Chemistry Chemical Phy-sics, 2015, 17, 15989.
66 Fateminia S M A, Mao Z, Xu S D, et al. Angewandte Chemie Internatio-nal Edition, 2017, 56, 12160.
67 Wang X F, Xiao H Y, Chen P Z, et al. Journal of the American Chemical Society, 2019, 141, 5045.
68 Tao Y, Tang L L, Wei Q, et al. Research, 2020, 2020, 2904928.
69 Yang J H, Zhang Y H, Wu X H, et al. Nature Communications, 2021, 12, 4883.
70 Zhou W W, Chen Y, Yu Q L, et al. Nature Communications, 2020, 11, 4655.
71 Chen X F, Xu C, Wang T, et al. Angewandte Chemie International Edition, 2016, 55, 9872.
72 Pfister A, Zhang G Q, Zareno J, et al. ACS Nano, 2008, 2(6), 1252.
73 Wang T, Su X G, Zhang X P, et al. Journal of Materials Chemistry C, 2019, 7, 9917.
74 Chen X H, Liu X D, Lei J L, et al. Molecular Systems Design & Engineering, 2018, 3, 364.
75 Ni X L, Xiao X, Cong H, et al. Accounts of Chemical Research, 2014, 47, 1386.
76 Wang J, Huang Z, Ma X, et al. Angewandte Chemie International Edition, 2020, 59, 9928.
77 Celli J P, Spring B Q, Rizvi I, et al. Chemical Reviews, 2010, 110, 2795.
78 Lucky S S, Soo K C, Zhang Y, et al. Chemical Reviews, 2015, 115, 1990.
79 Shi H F, Ma X, Zhao Q, et al. Advanced Functional Materials, 2014, 24, 4823.
80 Shi H F, Zou L, Huang K W, ACS Applied Materials Interfaces, 2019, 11, 18103.
81 Wang S, Xu M, Huang K W, et al. Science China Materials, 2020, 63, 316.
82 Xu L T, Zhou K, Ma H L, et al. ACS Applied Materials Interfaces, 2020, 12, 18385.
83 Durantini A M, Greene L E, Lincoln R, et al. Journal of the American Chemical Society, 2016, 138, 1215.
84 Hou Y Z, Jiang G Y, Gong J Y, et al. Chemical Research in Chinese Universities, 2021, 37, 73.
[1] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[2] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[3] 文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
[4] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[5] 马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰. 基于AIE特性的有机小分子和聚合物的应用进展[J]. 材料导报, 2021, 35(Z1): 566-570.
[6] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[7] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[8] 王京飞, 杨明庆, 牛春晖, 刘力双, 康浩, 吕勇. 铯钨青铜纳米材料的制备及其在节能领域的研究进展[J]. 材料导报, 2021, 35(21): 21202-21210.
[9] 陈九龙, 王双, 杜晓声. 二维纳米材料改性环氧树脂的研究进展[J]. 材料导报, 2021, 35(17): 17210-17217.
[10] 李道亮, 王嫦嫦, 郭婷, 周鸿媛, 张宇昊, 马良. 掺杂法制备溴氰菊酯UCNP-Fe3O4-MIP传感材料及其传感体系研究[J]. 材料导报, 2021, 35(12): 12169-12174.
[11] 杨璐, 王泽方. 氮化硼量子点的制备及应用综述[J]. 材料导报, 2021, 35(1): 1058-1076.
[12] 彭仁强, 李娜, 陈倩霞. 掺杂金属元素对Fe3O4纳米材料磁性性质影响的研究进展[J]. 材料导报, 2020, 34(Z2): 74-77.
[13] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[14] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[15] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed