Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 480-485    
  金属与金属基复合材料 |
基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值
郝新超
中国商飞上海飞机设计研究院,上海 201210
Interlaminar Tensile Strength Behavior and B-basis Value of Thick LaminatesBased on Anderson-Darling Test
HAO Xinchao
COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
下载:  全 文 ( PDF ) ( 3004KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 国内对于复合材料层间剪切性能的研究较多,但对于层间拉伸强度则研究甚少。本工作针对T800级复合材料厚层压板进行了层间拉伸强度试验,使用k-样本Anderson-Darling检验对试验数据进行统计分析,研究了铺层厚度、温度/湿度和分层缺陷对层间拉伸强度的影响,以期为复合材料在民用飞机上的应用提供数据支撑。试验表明:在5~12.9 mm厚度范围内,厚度不会对层间拉伸应力产生影响;与室温干态相比,高温湿态会降低层压板的层间拉伸应力;分层缺陷严重影响层间拉伸应力,且含分层缺陷的试件的层间拉伸强度受环境影响不明显。利用Anderson-Darling方法进行正态分布的拟合优度检验后,求得无分层缺陷层间拉伸强度B基准值和含可接受分层缺陷层间拉伸强度B基准值。基于以上B基准值求得层间拉伸强度含可接受分层缺陷的B基准折减系数为0.39。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝新超
关键词:  复合材料  层间拉伸强度  Anderson-Darling检验  拟合优度检验  B基准    
Abstract: There were many researches on interlaminar shear properties of composites in China, but few on interlaminar tensile strength. The interlaminar tensile strength of T800 thick composite laminates was tested. The k-sample Anderson-Darling test was used to do statistical analysis of the test results, and the influence of thickness, temperature/humidity and acceptable delamination defects on the interlaminar tensile strength were studied to provide data for the application of composite materials on civil aircraft. The test results show that: in the range of 5—12.9 mm thickness, changing the thickness will not affect the interlaminar tensile stress; compared with the room temperature dry state, the elevated temperature wet state reduces the interlaminar tensile stress of the laminate; delamination defects seriously affect the interlaminar tensile strength, and the interlaminar tensile strength of specimens with delamination defects is not significantly affected by the environment. After the goodness-of-fit test of normal distribution by Anderson-Darling method, the B-basis value of the interlaminar tensile strength without delamination defects and the B-basis value of the interlaminar tensile strength with delamination defects were obtained. Based on B-basis value above, the interlaminar tensile strength B-basis reduction factor of acceptable delamination defects was 0.39.
Key words:  composite    interlaminar tensile strength    Anderson-Darling test    goodness-of-fit test    B-basis value
                    发布日期:  2020-07-01
ZTFLH:  TB332  
作者简介:  郝新超,中国商飞上海飞机设计研究院高级工程师,长期从事民用飞机结构设计工作。
引用本文:    
郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
HAO Xinchao. Interlaminar Tensile Strength Behavior and B-basis Value of Thick LaminatesBased on Anderson-Darling Test. Materials Reports, 2020, 34(Z1): 480-485.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/480
1 陶杰,肖军,李顺林,等.复合材料学报,1991,8(3),71.
2 叶强,金浩,陈普会,等.复合材料学报,2016,33(5),1040.
3 李辉,张立同,曾庆丰,等.复合材料学报,2007,35(4),95.
4 中国航空研究院.复合材料结构设计手册,航空工业出版社,2001.
5 Department of Defense. MIL-HDBK-17-1G Polymer matrix composites guidelines for characterization of structural materials, Materials Sciences Corporation, MIL-HDBK-17 secretariat, USA,2009.
6 Composite Materials Handbook-17 Coordinate Committee. Polymer matrix composites guidelines for characterization of structure materials: CMH-17G volume 1, CMH-17 Coordinate Committee, USA,2012.
7 中国航空工业集团公司.HB 7618-2099聚合物基复合材料力学性能数据表达准则,国防科学技术工业委员会,2009.
8 刘遂,关志东,郭霞,等.航空材料学报,2013,33(1),86.
9 周国统.层合板层间拉伸及剪切性能研究.硕士学位论文,哈尔滨工业大学,2018.
[1] 杨松, 盛双华, 刘应开. 基于Au修饰的花状V2O5的表面增强拉曼散射研究[J]. 材料导报, 2020, 34(Z1): 34-38.
[2] 刘竹, 杨守禄, 姬宁, 罗扬, 许杰, 吴义强. 油茶果壳高值化利用研究进展[J]. 材料导报, 2020, 34(Z1): 120-127.
[3] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[4] 孙阔. 碳纤维复合材料滑动舱门刚度试验与仿真分析[J]. 材料导报, 2020, 34(Z1): 161-163.
[5] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[6] 周长壮, 马琳, 崔庆贺, 梁金第. 颗粒增强铝基复合材料TLP连接综述与展望[J]. 材料导报, 2020, 34(Z1): 351-355.
[7] 张洋, 张海燕, 陈蕴博, 王大鹏, 陈林, 刘晓萍. 热处理对热压制备Al-Cu-Mg/SiCp制动耐磨复合材料组织及磨损性能的影响[J]. 材料导报, 2020, 34(Z1): 356-360.
[8] 李亚林, 孙垒, 曹柳絮, 焦孟旺, 罗伟, 邱振宇, 王畅. 汽车制动盘用铝基复合材料摩擦磨损研究进展[J]. 材料导报, 2020, 34(Z1): 361-365.
[9] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[10] 秦笑, 王娟, 林高用, 郑开宏, 王海艳, 冯晓伟. 镀铜石墨/铜复合材料的组织和摩擦磨损性能[J]. 材料导报, 2020, 34(Z1): 380-384.
[11] 曹飞, 陈杰, 林泽力. 基于小波能量谱和信息熵的复合材料结构损伤诊断[J]. 材料导报, 2020, 34(Z1): 476-479.
[12] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[13] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[14] 孙元平, 姚毅恒, 张淑娴, 马建新, 翁赟. 竹缠绕复合材料的线膨胀系数测试[J]. 材料导报, 2020, 34(Z1): 539-541.
[15] 朱洪艳, 吴宝昌, 林长亮, 王金亮, 王刚. 直升机复合材料结构基于振动健康监测的研究进展[J]. 材料导报, 2020, 34(Z1): 581-584.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed