Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 41-46    https://doi.org/10.11896/j.issn.1005-023X.2017.04.010
  材料研究 |
Si3N4和52100钢对磨副材料对CrN薄膜干摩擦学行为的影响*
王淑庆, 王成彪, 朱丽娜, 岳文, 付志强, 康嘉杰
中国地质大学(北京) 工程技术学院, 北京 100083
Effects of the Counter Pair Materials of Si3N4 and 52100 Steel on
Dry Sliding Tribological Behavior of CrN Thin Film
WANG Shuqing, WANG Chengbiao, ZHU Lina, YUE Wen,
FU Zhiqiang, KANG Jiajie
College of engineering and technology, China University of Geosciences Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 2329KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用阴极电弧离子镀技术在316L不锈钢基体上制备了CrN薄膜。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、纳米压痕仪对CrN薄膜的形貌、成分和力学性能进行了表征。为了研究Si3N4和52100钢对磨副材料对CrN薄膜和316L不锈钢干摩擦行为的影响,在2 N、5 N、8 N三种载荷下,将CrN薄膜和316L不锈钢基体与Si3N4陶瓷球和52100钢球分别进行了往复式滑动干摩擦实验。采用扫描电子显微镜观察了磨痕的微观形貌,并对CrN薄膜和316L不锈钢基体的磨损机制进行了分析。结果表明:CrN薄膜表面平整,缺陷较少;CrN薄膜的纳米硬度约为28 GPa,弹性模量约为350 GPa;与Si3N4陶瓷球相比,CrN薄膜与52100钢球摩擦时摩擦因数相对较小(保持在0.7左右)且更加稳定;316L不锈钢的摩擦因数远大于CrN薄膜且波动较大;对磨球为Si3N4陶瓷球时,CrN薄膜的主要磨损机制为磨粒磨损,伴有少量的氧化和黏着磨损,316L不锈钢的磨损机制主要为磨粒磨损和塑性变形,伴有少量的氧化和黏着磨损;对磨球为52100钢球时,CrN薄膜的主要磨损机制为黏着磨损,伴有少量的氧化,316L不锈钢的磨损机制主要为黏着磨损,伴有少量的氧化和磨粒磨损。CrN薄膜与两种对磨球的磨损量均小于316L不锈钢基体的磨损量,说明CrN薄膜有效提高了基体的耐磨性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王淑庆
王成彪
朱丽娜
岳文
付志强
康嘉杰
关键词:  CrN薄膜  组织结构  摩擦学性能  力学性能    
Abstract: CrN thin films were deposited on 316L stainless steel substrate by cathodic arc ion plating technique. The topography, composition and mechanical properties of CrN thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nano indentation. In order to study the effects of the counter pair materials of Si3N4 and 52100 steel on the dry sliding friction behavior of CrN thin film and 316L stainless steel, the reciprocating sliding friction wear test on CrN thin film and 316L stainless steel against Si3N4 ceramic balls and 52100 balls were carried out under three kinds of loads (2 N, 5 N and 8 N). The morphologies of wear scars were observed by using scanning electron microscope, and the sliding wear mechanisms of CrN film and 316L stainless steel were discussed. The results showed that the surface of CrN thin film was smooth, and the defect was less. The nano hardness and the elastic modulus of the CrN thin film were about 28 GPa and 350 GPa, respectively. Compared with the Si3N4 ceramic ball, the friction coefficient of the CrN film against the 52100 steel ball was relatively small (about 0.7) and more stable. The friction coefficient of 316L stainless steel was much larger than that of CrN film. The wear mechanisms of CrN films against Si3N4 ceramic ball was mainly abrasive wear, and against 52100 steel ball was delamination and abrasive wear of the composite. The wear mechanisms of 316L stainless steel were abrasive wear and plastic deformation of the composite. When sliding against Si3N4 ceramic ball, the wear mechanisms of CrN films was mainly abrasive particle wear, accompanied by a small amount of oxidation and adhesion, and the wear mechanisms of 316L stainless was mainly abrasive wear and plastic deformation, accompanied by a small amount of oxidation and adhesion. When sliding against 52100 steel ball, the wear mechanisms of CrN films was mainly adhesive wear, accompanied by a small amount of oxidation, and the wear mechanisms of 316L stainless was mainly adhesive wear, accompanied by a small amount of oxidation and grinding particle abrasion. The wear of CrN thin films with two kinds of wear resistance ball were less than 316L stainless steel matrix wear, indicating that CrN film effectively improve the wear resistance of the matrix.
Key words:  CrN thin film    microstructure    tribological properties    mechanical properties
               出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TG115  
基金资助: *北京市自然科学基金青年项目(3164049);国家自然科学基金航天先进制造技术研究联合基金培育项目(U1537108);中央高校基本科研业务费专项资金资助项目(2652015070;2652015308)
通讯作者:  朱丽娜:通讯作者,女,1984年生,讲师,博士,研究方向为摩擦学与表面工程 Tel:(010)82321981 E-mail:zhulina@cugb.edu.cn   
作者简介:  王淑庆:女,1991 年生,硕士研究生,研究方向为耐磨薄膜制备技术与摩擦学
引用本文:    
王淑庆, 王成彪, 朱丽娜, 岳文, 付志强, 康嘉杰. Si3N4和52100钢对磨副材料对CrN薄膜干摩擦学行为的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 41-46.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.010  或          http://www.mater-rep.com/CN/Y2017/V31/I4/41
1 Pwtrogalli C, Montesano L, Gelfi M, et al. Tribological and corrosion behavior of CrN coatings: Roles of substrate and deposition defects[J]. Surf Coat Technol,2014,258:878.
2 Chen Tao, et al. CrN thin film for surface coating of engine piston ring[J].China Surf Eng,2010,23(3):102(in Chinese).
陈涛,等. 用于发动机活塞环表面涂层的 CrN 薄膜[J]. 中国表面工程,2010,23(3):102.
3 Liu Aihua. High temperature friction and wear characteristics and mechanism of PVD nitride coating[D]. Jinan: Shandong University,2012(in Chinese).
刘爱华. PVD氮化物涂层的高温摩擦磨损特性及机理研究 [D]. 济南:山东大学,2012.
4 Barshilia H C, Selvakumar N, Deepthi B, et al. A comparative stduy of reactive direct current magnetron sputtered AlCrN and CrN coatings[J]. Surf Coat Technol,2006,201(6):2193.
5 Polcara T, Kubartb T, Nova′k R, et al. Comparison of tribological behaviour of TiN, TiCN and CrN at elevated temperatures[J]. Surf Coat Technol,2005,193(1):192.
6 Chim Y C, Ding X Z, Zeng X T, et al. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating catho-de arc[J]. Thin Solid Films,2009,517(17):4845.
7 Ren Yuan. Research on the friction and wear properties of CrN and AlCrN coatings on the physical vapor deposition[D]. Chengdu: Southwest Jiao Tong University,2011(in Chinese).
任元. 物理气相沉积CrN和AlCrN涂层转动微动摩擦磨损性能研究[D]. 成都: 西南交通大学,2011.
8 Guo Zhenwen, Zhang Wenquan, Liu Xuefeng, et al. Friction and wear characteristics of 316L stainless steel /Y-PSZ composites[J]. J University of Science and Technology Beijing,2008,30(7):740(in Chinese).
郭振文, 张文泉, 刘雪峰, 等. 316L不锈钢/Y-PSZ复合材料摩擦磨损特性[J]. 北京科技大学学报,2008,30(7):740.
9 Li Gan, Shen Mingxue, Meng Xiangkai, et al. 316L stainless steel groove type surface micro textures of reducing friction characteristics of experimental study[J].J Funct Mater,2015,46(2):02033(in Chinese).
历淦, 沈明学, 孟祥铠, 等. 316L不锈钢沟槽型表面微织构减摩特性实验研究[J].功能材料,2015,46(2):02033.
10 Xie Hongmei, Nie Zhaoyin. A comparative study on the environment of TiN and CrN[J]. New Technol New Process,2010(6):63(in Chinese).
谢红梅, 聂朝胤. TiN, CrN的环境摩擦磨损对比研究[J]. 新技术新工艺,2010(6):63
11 Drory Michael D, Evans Ryan D. Deposition and characteristics of chromium thin film coatings on precision balls for tribological applications[J]. Surf Coat Technol,2011,206(7):1983.
12 Mo J L, Zhu M H. Sliding tribological behaviors of PVD CrN and AlCrN coatings against Si3N4 ceramic and pure titanium[J]. Wear,2009,267(5):874.
13 Zhou F, Chen K M, Wang M L, et al. Friction and wear properties of CrN coatings sliding against Si3N4 balls in water and air[J]. Wear,2008,265(7-8):1029.
14 Shan Lei, Wang Y X, Li J L, et al. Improving tribological perfor-mance of CrN coatings in seawater by structure design[J]. Tribology Int,2015,82:78.
15 Zhou Fei, Wang Yuan, Liu F, et al. Friction and wear properties of duplex MAO/CrN coatings sliding against Si3N4 ceramic balls in air, water and oil [J]. Wear,2009,267(9):1581.
16 Yu Lihua, Yuan Caiyun, Xu Junhua. Microstructure and properties of NbSiN composite films deposited by magnetron sputtering[J]. Mater Eng,2013(7):35(in Chinese).
喻利花, 苑彩云, 许俊华. 磁控溅射NbSiN 复合膜的微结构和性能[J].材料工程,2013(7):35
17 Li Yueqiao, Li Weizhou, Liang Tianquan, et al. The initial oxidation morphology, structure and reaction mechanism of arc ion plating AlCrN coating layer[J]. Mater Protection,2010,43(12):25(in Chinese).
李月巧, 李伟洲, 梁天权, 等. 电弧离子镀 AlCrN 沉积层初期氧化形貌、组构及反应机制[J]. 材料保护,2010,43(12):25.
18 Kong Dejun, Fu Guizhong, Wang Wenchang, et al. High temperature friction and wear behavior of AlCrN coatings prepared by cathodic arc ion plating[J].J Chin Vacuum Sci Technol,2014,34(7):700(in Chinese).
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed