Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2397-2402    https://doi.org/10.11896/cldb.18050096
  金属与金属基复合材料 |
A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响
杨世杰1, 李元东1,2, 曹驰1,2, 董澎源1, 李嘉铭1, 李明1
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;
2 兰州理工大学有色金属合金及加工教育部重点实验室,兰州 730050
Effect of A356 Covering Plate Temperature on the Microstructure and Mechanical Properties of AZ31/A356 Composite Plate Fabricated by Cast Roll Bonding
YANG Shijie1, LI Yuandong1,2, CAO Chi1,2, DONG Pengyuan1, LI Jiaming1, LI Ming1
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050;
2 Key Laboratory of Non-ferrous Metal Alloys and Processing, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 3658KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用铸轧法制备的镁/铝复合板,研究了A356铝合金覆层温度对界面组织及力学性能的影响。结果表明,镁/铝复合板界面过渡区可分为三个区域,靠近AZ31一侧可能形成了镁侧过渡区Ⅰ区(δ-Mg和Mg17Al12),靠近A356一侧可能形成了铝侧过渡区Ⅱ区(α-Al和Al3Mg2),以及扩散界面中间区Ⅲ区(Mg17Al12、Mg2Si和Al3Mg2)。随着A356覆层温度的升高,界面过渡区的宽度持续增加,且金属间化合物的种类增多、体积分数增大。界面过渡区的显微硬度比基体的高,剪切实验时易在脆性相处发生断裂,靠近AZ31一侧为解理断裂,靠近A356一侧为准解理断裂,均为脆性断裂。A356覆层温度为640 ℃时,复合板的剪切强度达到最大值,为108 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨世杰
李元东
曹驰
董澎源
李嘉铭
李明
关键词:  镁/铝复合板  力学性能  界面过渡区  金属间化合物    
Abstract: The present work aims to investigate the effects of A356 covering plate temperature on interfacial microstructure and mechanical properties of the cast-rolled Mg/Al composite plate. The results indicate that the interfacial transition zone of Mg/Al can be divided into three regions: region I is adjacent to Mg and may form Mg transition region (δ-Mg and Mg17Al12), region II is adjacent to Al and may form Al transition region (α-Al and Al3Mg2), region III is regarded as the diffusion interfacial intermediate region (Mg17Al12, Mg2Si and Al3Mg2). The increasing temperature of the A356 covering plate results in a continuous rise of the width of the interfacial transition zone, and also the increment of type and volume fraction of the intermetallic compounds. Microhardness in the interfacial transition zone is higher than that of the matrix. It is easy to observe the phenomenon of brittle fracture along the brittle phase during the shear strength test. There occur cleavage fracture and quasi-cleavage fracture, both of which are brittle fracture, at AZ31 side and A356 side, respectively. The shear strength of the composite plate reaches its maximum value of 108 MPa when the temperature of the A356 covering plate is 640 ℃.
Key words:  Mg/Al composite plate    mechanical property    interfacial transition zone    intermetallic compound
                    发布日期:  2019-06-19
ZTFLH:  TG335.81  
基金资助: 国家自然科学基金(51464031);甘肃省重点研发计划(17YF1GA021)
通讯作者:  liydlut@163.com   
作者简介:  杨世杰,就读于兰州理工大学材料科学与工程学院研究生三年级,工程硕士。主要从事金属基复合材料(层状金属复合材料)领域的研究。李元东,兰州理工大学材料科学与工程学院教授,博士研究生导师。1995年6月毕业于甘肃工业大学铸造专业并留校任教,2000年6月获甘肃工业大学硕士学位,2005年获得兰州理工大学材料加工工程博士学位。主要从事铸造铝合金、镁合金和半固态成形及其凝固行为、自孕育铸造、扩散凝固、锌基合金及其复合材料、变形合金铸造成形技术、表面改性与处理等方面的研究。提出了自孕育凝固的概念及理论。申请发明专利12件,获省部级科技奖励7项。发表论文90多篇。SCI、EI收录40多篇。
引用本文:    
杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
YANG Shijie, LI Yuandong, CAO Chi, DONG Pengyuan, LI Jiaming, LI Ming. Effect of A356 Covering Plate Temperature on the Microstructure and Mechanical Properties of AZ31/A356 Composite Plate Fabricated by Cast Roll Bonding. Materials Reports, 2019, 33(14): 2397-2402.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050096  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2397
1 Kaho Tomita, Kiyotaka Matsuura, Munekazu Ohno, et al. Key Enginee-ring Materials, 2015, 641, 69.
2 Eldesouky A, Johnsson M, Svengren H, et al. Journal of Alloys and Compounds, 2014, 609, 215.
3 Muralidharan, Paramsothy, Manoj Gupta. Materials and Design, 2015, 66, 557.
4 Habibnejad-Korayem M, Mahmudi R, Ghasemi H M, et al. Wear, 2010, 268, 405.
5 Nie J F, Zhu Y M, Liu J Z, et al. Science, 2013, 340, 957.
6 Liu F, Liang W, Li X, et al. Journal of Alloys and Compounds, 2008, 461, 399.
7 Li X, Liang W, Zhao X, et al. Journal of Alloys and Compounds, 2009, 471, 408.
8 Spencer K, Zhang M X. Scripta Materialia, 2009, 61, 44.
9 Liu P, Li Y J, Geng H R, et al. Materials Letters, 2005, 59, 2001.
10 Wang J F, Wu Z S, Wang S H, et al. Materials Review B: Research Papers, 2016, 30(12), 59(in Chinese).
王敬丰, 吴忠山, 王少华, 等. 材料导报:研究篇, 2016, 30(12), 59.
11 Li X B, Zu G Y, Wang P. The Chinese Journal of Nonferrous Metals, 2013, 23(5), 1202(in Chinese).
李小兵, 祖国胤, 王平. 中国有色金属学报, 2013, 23(5), 1202.
12 Mojtaba Jafarian, Mohsen Saboktakin Rizi, Morteza Jafarian, et al. Materials Science and Engineering A, 2016, 666, 372.
13 Shang J, Wang K L, Zhou Q, et al. Transactions of Nonferrous Metals Society of China, 2012, 22, 1961.
14 Wu K, Chang H, Maawad E, et al. Materials Science and Engineering A, 2010, 527, 3073.
15 Zhang X P, Yang T H, Castagne S, et al. Materials Science and Engineering A, 2011, 528, 1954.
16 Jin Y J, Khan T I. Materials and Design, 2012, 38, 32.
17 Li Z B. Study on liquid-solid composite boinding of Mg/Al bimetal. Master's Thesis, Harbin Engineering University, China, 2014(in Chinese).
李增贝. Mg/Al 双金属液固复合连接的研究. 硕士学位论文, 哈尔滨工程大学, 2014.
18 Joseph Fernandus M, Senthilkumar T, Balasubramanian V, et al. Mate-rials and Design, 2012, 33, 31.
19 Guo Q W, Wang G S, Guo G C. Commonly used nonferrous binary alloy phase atlas, Chemical Industry Press, China, 2010(in Chinese).
郭青蔚, 王桂生, 郭庚辰. 常用有色金属二元合金相图集, 化学工业出版社, 2010.
20 Liu J C, Hu J, Nie X Y, et al. Materials Science and Engineering A, 2015, 365, 70.
21 Liu W S, Long L P, Ma Y Z, et al. Journal of Alloys and Compounds, 2015, 643, 34.
22 Zhong P C, Zhao Z H. Fractography, Higher Education Press, China, 2006(in Chinese).
钟群鹏, 赵子华. 断口学, 高等教育出版社, 2006.
23 Zhu B, Liang W, Li X R. Materials Science and Engineering A, 2011, 528, 6584.
24 Sarah Brennan, Katrina Bermudez, Nagrajs. Kulkarni, et al. Metallurgical and Materials Transactions A, 2012, 43, 2012.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[10] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[11] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[15] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed