Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2609-2617    https://doi.org/10.11896/j.issn.1005-023X.2018.15.011
  无机非金属及其复合材料 |
含h-BN复相陶瓷制备及性能研究进展
李延军1,2, 刘冬华1, 张电1, 马昱昭1
1 西安建筑科技大学材料与矿资学院,西安 710049;
2 中钢集团洛阳耐火材料研究院有限公司,先进耐火材料国家重点实验室,洛阳 471039
Advances in Fabrication and Properties Research of h-BN Contained Ceramic Composites
LI Yanjun1,2, LIU Donghua1, ZHANG Dian1, MA Yuzhao1
1 College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710049;
2 StateKey Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471039
下载:  全 文 ( PDF ) ( 1813KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陶瓷材料密度低、抗腐蚀性及耐磨性良好,但是其硬而脆导致加工困难、抗热震性差。h-BN具有弹性模量低、硬度低的特点,其可加工性能和抗热震性能优异。将h-BN引入陶瓷基体制备含h-BN复相陶瓷,能够有效改善陶瓷材料的可加工性能和抗热震性。对含h-BN复相陶瓷的材料体系、制备工艺和性能的研究一直备受关注。本文以h-BN的引入方式为分类依据较全面地总结了含h-BN复相陶瓷的制备方法。本文对引入h-BN后所制备的含h-BN复相陶瓷的常规力学性能、抗热震性、可加工性、透波性、摩擦磨损等性能的影响进行了综述;对含h-BN复相陶瓷的制备及性能研究中存在的问题进行了概括,并对该材料体系的研究方向提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李延军
刘冬华
张电
马昱昭
关键词:  h-BN  复相陶瓷  力学性能  抗热震性  可加工性  透波性    
Abstract: Ceramic materials possess the advantages of low density, favorable corrosion resistance and abrasive resistance. Nevertheless, ceramics are pretty hard and brittle, which results in poor machinability and thermal shock resistance. h-BN presents low elastic modulus and hardness, its machinability and thermal shock resistance are excellent. Therefore, the machinability and thermal shock resistance of ceramics can be obviously improved by introducing h-BN into ceramics. The research on the materials system, fabrication routes, and properties of the h-BN contained ceramic composites have been attracting enormous attention. In this article, fabrication routs of h-BN contained ceramic composites are reviewed based on the introducing methods of h-BN. The effects of h-BN on the properties of h-BN contained ceramic composites, including mechanical properties, thermal shock resistance, machi-nability, wave transparent properties and tribology properties are summarized thoroughly. The existing problems on the fabrication and properties research of the h-BN contained ceramic composites are concluded, and the future research and development direction is proposed.
Key words:  h-BN    ceramic composites    mechanical properties    thermal shock resistance    machinability    wave transparent property
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TB321  
  TB332  
基金资助: 陕西省自然科学基础研究计划面上项目(2017JM5117);先进耐火材料国家重点实验室开放基金(201602);陕西省教育厅科学研究计划专项(17JK0470)
作者简介:  李延军:男,博士,讲师,主要从事高温结构陶瓷材料的制备和性能研究 E-mail:liyanjun@xauat.edu.cn
引用本文:    
李延军, 刘冬华, 张电, 马昱昭. 含h-BN复相陶瓷制备及性能研究进展[J]. 材料导报, 2018, 32(15): 2609-2617.
LI Yanjun, LIU Donghua, ZHANG Dian, MA Yuzhao. Advances in Fabrication and Properties Research of h-BN Contained Ceramic Composites. Materials Reports, 2018, 32(15): 2609-2617.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.011  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2609
1 Kusunose T, Sekino T, Choa Y H, et al. Fabrication and microstructure of silicon nitride/boron nitride nanocomposites[J].Journal of the American Ceramic Society,2002,85(11):2678.
2 Kusunose T, Sekino T, Choa Y H, et al. Machinability of silicon nitride/boron nitride nanocomposites[J].Journal of the American Ceramic Society,2002,85(11):2689.
3 Jiang T, Jin Z H, Qiao G J, et al. Fabtication and thermal shock resistance of the machinable BN/B4C composite ceramics[J].Journal of the Chinese Ceramic Society,2010,38(8):1527(in Chinese).
江涛,金志浩,乔冠军,等.可加工BN/B4C复相陶瓷的制备与其抗热震性能[J].硅酸盐学报,2010,38(8):1527.
4 Gao L, Jin X H, Li J G, et al. BN/Si3N4 nanocomposite with high strength and good machinability[J].Materials Science and Enginee-ring:A,2006,415(1-2):145.
5 Shuba R, Chen I W. Machinable α-SiAlON/BN composites[J].Journal of the American Ceramic Society,2006,89(7):2147.
6 Coblenz W S, Lewis D. In situ reaction of B2O3 with AlN and/or Si3N4 to form BN-toughened composites[J].Journal of the American Ceramic Society,1988,71(12):1080.
7 Zhang G J, Ohji T. In situ reaction synthesis of silicon carbide-boron nitride composites[J].Journal of the American Ceramic Society,2001,84(7):1475.
8 Zhang G J, Yang J F, Ando M, et al. Nonoxide-boron nitride composites: In situ synthesis, microstructure and properties[J].Journal of the European Ceramic Society,2002,22(14-15):2551.
9 Zhang G J, Ohji T. Microstructures and properties of in situ nono-xide-boron nitride (Nobn) composites[J].Key Engineering Mate-rials,2002,206-213:1037.
10 Zhang G J, Ohji T. Reactions and processing of in situ nonoxide-boron nitride (Nobn) composites[J].Key Engineering Materials,2002,206-213:239.
11 Zhang G J, Yang J F, Ohji T, et al. In-situ reaction synthesis of non-oxide boron nitride composites[J].Advanced Engineering Materials,2002,4(1-2):15.
12 Zhang G J, Ando M, Yang J F, et al. Reaction synthesis of high performance boron nitride-containing composites (BNCC)[J].Silicates Industriels,2004,69(5-6):153.
13 Zhong B, Zhao G L, Huang X X, et al. Microstructure and mechanical properties of ZTA/BN machinable ceramics fabricated by reactive hot pressing[J].Journal of the European Ceramic Society,2015,35(2):641.
14 Li Y S, Yin J, Wu H B, et al. Microstructure, thermal conductivity, and electrical properties of in situ pressureless densified SiC-BN composites[J].Journal of the American Ceramic Society,2015,98(3):879.
15 Wu W W, Xiao W L, Estili M, et al. Microstructure and mechanical properties of ZrB2-SiC-BN composites fabricated by reactive hot pressing and reactive spark plasma sintering[J].Scripta Materialia,2013,68(11):889.
16 Wu W W, Estili M, Nishimura T, et al. Machinable ZrB2-SiC-BN composites fabricated by reactive spark plasma sintering[J].Mate-rials Science and Engineering:A,2013,582:41.
17 Zheng Y T, Li H B, Zhou T. Microstructure and mechanical properties of h-BN-SiC ceramic composites prepared by in situ combustion synthesis[J].Materials Science and Engineering:A,2012,540:102.
18 Yang Z H, Jia D C, Zhou Y, et al. Thermal shock resistance of in situ formed SiC-BN composites[J].Materials Chemistry and Physics,2008,107(2-3):476.
19 Lutz E H, Swain M V. Fracture toughness and thermal shock beha-vior of silicon nitride-boron nitride ceramics[J].Journal of the Ame-rican Ceramic Society,1992,75(1):67.
20 Isomura K, Fukuda T, Ogasahara K, et al. Machinable Si3N4-BN composite ceramics with high thermal shock resistance, high erosion resistance[C]∥Unified International Technical Conference on Refractories (UNITECR). Anaheim, California, American Ceramic Society,1989:624.
21 Noviyanto A, Yoon D-H, Lee K, et al. Effect of hexagonal-BN on phase transformation of additive-free Si3N4/SiC nanocomposites prepared from amorphous precursor[J].Transactions of Nonferrous Metals Society of China,2013,23(2):420.
22 Cho W S, Lee J H, Cho M W, et al. Microstructure and mechanical properties of silicon nitride h-BN based machinable ceramics[J].Key Engineering Materials,2005,287:340.
23 Yoon Y S, Na S W, Lee J, et al. R-Curve behavior of Si3N4-BN composites[J].Journal of the American Ceramic Society,2004,87(7):1374.
24 Wang R G, Pan W, Jiang M N, et al. Investigation of the physical and mechanical properties of hot-pressed machinable Si3N4/h-BN composites and FGM[J].Materials Science and Engineering: B,2002,90(3):261.
25 Wang R G, Pan W, Chen J, et al. Fabrication and characterization of machinable Si3N4/h-BN functionally graded materials[J].Materials Research Bulletin,2002,37(7):1269.
26 Li Y L, Li R X, Zhang J X. Rapid preparation of strong machinable Si3N4-based composites[J].Journal of Beijing University of Techno-logy,2007,33(11):1218(in Chinese).
李永利,李瑞霞,张久兴.高性能Si3N4基可加工复合陶瓷的快速制备[J].北京工业大学学报,2007,33(11):1218.
27 Zhang K, Zhang Q, Wang P F, et al. Silicon nitride/boron nitride composite by combustion synthesis[J].Materials Science Forum,2007,561-565:531.
28 Zhang Q, Shen W P, Gu S Y. Fabrication of machinable silicon nitride/boron nitride composite ceramics[J].Journal of the Chinese Ceramic Society,2007,35(3):337(in Chinese).
张强,沈卫平,顾淑媛.可加工氮化硅/氮化硼复相陶瓷的制备[J].硅酸盐学报,2007,35(3):337.
29 Liu J X, Yuan B, Zhang G J, et al. Properties of porous Si3N4/BN composites fabricated by RBSN technique[J].International Journal of Applied Ceramic Technology,2009,7(4):536.
30 Li Y F, Liu P, Wang X D, et al. Interface structure and formation mechanism of BN/intergranular amorphous phase in pressureless sintered Si3N4/BN composites[J].Scripta Materialia,2010,63(2):185.
31 Dou J P, Liu X L, Ma J T, et al. Dielectric and mechanical properties of porous Si3N4-BN ceramic composites[J].Key Engineering Materials,2012,512-515:854.
32 Zhao D L, Zhang Y J, Gong H Y, et al. Effect of BN whiskers on dielectric and mechanical properties of BNw/Si3N4 composites[J].Materials Research Innovations,2011,15(3):226.
33 Wang S J, Jia D C, Yang Z H, et al. Effect of BN content on microstructures, mechanical and dielectric properties of porous BN/Si3N4 composite ceramics prepared by gel casting[J].Ceramics Internatio-nal,2013,39(4):4231.
34 Zhuang Y L, Wang S J, Jia D C, et al. Fabrication of gel cast BN/Si3N4 composite ceramics from surface-coated BN powder[J].Materials Science and Engineering:A,2015,626:27.
35 Feng Y R, Gong H Y, Zhang Y J, et al. Effect of BN content on the mechanical and dielectric properties of porous BNp/Si3N4 ceramics[J].Ceramics International,2016,42(1):661.
36 Zhao Y J, Zhang Y J, Gong H Y, et al. Gas pressure sintering of BN/Si3N4 wave-transparent material with Y2O3-MgO nanopowders addition[J].Ceramics International,2014,40(8):13537.
37 Thévenot F, Doche C, Mongeot H, et al. Si3N4/BN composites obtained from aminoboranes as BN precursors and sintering aids[J].Journal of the European Ceramic Society,1997,17(15-16):1911.
38 Kusunose T, Choa Y H, Sekino T, et al. Mechanical properties of Si3N4/BN composites by chemical processing[J].Key Engineering Materials,1998,161-163:475.
39 Wang X D, Qiao G J, Jin Z H. Investigation of fabrication and pro-perties of machinable Si3N4/BN nanocomposite ceramics[J].Key Engineering Materials,2003,247:311.
40 Wang X D, Qiao G J, Jin Z H. Investigation of fabrication and pro-perties of machinable Si3N4/BN nanocompo-site ceramics[J].Rare Metal Materials and Engineering,2003,247(7):498(in Chinese).
王向东,乔冠军,金志浩.可加工Si3N4/BN复相陶瓷的制备及性能研究[J].稀有金属材料与工程,2003,32(7):498.
41 Liu K, Zhang C R, Xiao Y D, et al. Synthesis of Si3N4-BN compo-sites using borazine as the precursor[J].Materials Science and Engineering:A,2013,575:48.
42 Li B, Liu K, Zhang C R, et al. Fabrication and properties of borazine derived boron nitride bonded porous silicon aluminum oxynitride wave-transparent composite[J].Journal of the European Ceramic Society,2014,34(15):3591.
43 Liu K, Zhang C R, Li B, et al. Synthesis of porous silicon nitride-boron nitride composites by gel-casting and PIP[J].Journal of Materials Engineering and Performance,2014,23(8):2829.
44 Liu K, Zhang C R, Li B, et al. Effect of pyrolysis temperature on properties of porous Si3N4-BN composites fabricated via PIP route[J].Journal of Materials Engineering and Performance,2013,22(12):3684.
45 Li H W, Zhang Q, Jin Z H, et al. Effect of heat treatment in oxidizing atimophere on machinable SiC/h-BN composite ceramics[J].Journal of the Chinese Ceramic Society,2010,38(8):1503(in Chinese).
李红伟,张琴,金志浩,等.氧化气氛下热处理对SiC/h-BN复相可加工陶瓷性能的影响[J].硅酸盐学报,2010,38(8):1503.
46 Wang X D, Qiao G J, Jin Z H. Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites[J].Journal of the American Ceramic Society,2004,87(4):565.
47 Jin H Y, Xu H, Qiao G J, et al. Study of machinable silicon carbide-boron nitride ceramic composites[J].Materials Science and Enginee-ring:A,2008,483-484:214.
48 Takafumi K, Tohru S, Yoichi A. Synthesis of SiC/BN nanocompo-site powders by carbothermal reduction and nitridation of borosilicate glass, and the properties of their sintered composites[J].Nanotech-nology,2008,19(27):275603.
49 Li Y S, Yin J, Wu H B, et al. Enhanced electrical resistivity in SiC-BN composites with highly-active BN nanoparticles synthesized via chemical route[J].Journal of the European Ceramic Society,2015,35(5):1647.
50 Lewis D, Ingel R P, Mcdonoughs W J, et al. Microstructure and thermomechanical properties in alumina- and mullite-boron-nitride particulate ceramic-ceramic composites[J].Ceramic Engineering and Science Proceedings,1981,2(7-8):719.
51 Lewis D, Rice R W. Thermal shock fatigue of monolithic ceramics and ceramic-ceramic particulate composites[J].Ceramic Engineering and Science Proceedings,1981,2(7-8):712.
52 Shi Z Q, Wang J P, Qiao G J, et al. Machinability, deformation, and cracks behavior of pressureless-sintered Al2O3/h-BN compo-sites: Role of weak boundary phases[J].Journal of Materials Science,2009,44(6):1580.
53 Shi Z Q, Wang J P, Qiao G J, et al. Effects of weak boundary phases (WBP) on the microstructure and mechanical properties of pressureless sintered Al2O3/h-BN machinable composites[J].Materials Science and Engineering:A,2008,492(1-2):29.
54 Li Y L, Qiao G J, Jin Z H. Machinable Al2O3/BN composite cera-mics with strong mechanical properties[J].Materials Research Bulletin,2002,37(8):1401.
55 Li Y L, Qiao G J, Jin Z H. Study on fabrication and sintering of Al2O3 composite powder coated with nano-sized BN[J].Journal of the Chinese Ceramic Society,2002,30(4):491(in Chinese).
李永利,乔冠军,金志浩.纳米BN包覆的Al2O3复合粉的制备及其烧结性能研究[J].硅酸盐学报,2002,30(4):491.
56 Li Y L, Qiao G J, Jin Z H. Effect of additions on the properties of Al2O3/BN machinable ceramics[J].Rare Metal Materials and Engineering,2004,33(7):744(in Chinese).
李永利,乔冠军,金志浩.添加剂对Al2O3/BN可加工陶瓷性能的影响[J].稀有金属材料与工程,2004,33(7):744.
57 Liang F, Xue Z L, Zhao L, et al. Mechanical properties and thermal shock resistance of alumina/hexagonal boron nitride composite refractories[J].Metallurgical and Materials Transactions A,2015,46(9):4335.
58 Zhang X H, Zhang R B, Chen G Q, et al. Microstructure, mechanical properties and thermal shock resistance of hot-pressed ZrO2(3Y)-BN composites[J].Materials Science and Engineering: A,2008,497(1-2):195.
59 Li Y L, Zhang J X, Qiao G J, et al. Fabrication and properties of machinable 3Y-ZrO2/BN nanocomposites[J].Materials Science and Engineering: A,2005,397(1-2):35.
60 Zhao H Y, Wang W M, Fu Z Y, et al. Preparation and properties of alumium nitride-boron nitride composite ceramic[J].Journal of the Chinese Ceramic Society,2007,35(12):1595(in Chinese).
赵海洋,王为民,傅正义,等.氮化铝-氮化硼复合陶瓷的制备和性能[J].硅酸盐学报,2007,35(12):1595.
61 Qin M L, Qu X H, Duan B H, et al. Fabrication of high density AlN-BN composite ceramics by presureless sintering[J].Journal of Inorganic Materials,2005,20(1):245(in Chinese).
秦明礼,曲选辉,段柏华,等.无压烧结制备高致密度AlN-BN复合陶瓷[J].无机材料学报,2005,20(1):245.
62 Jin H Y, Wang W, Gao J Q, et al. Study of machinable AlN/BN ceramic composites[J].Materials Letters,2006,60(2):190.
63 Kusunose T, Sekino T, Ando Y. Contact damage of machinable aluminum nitride/boron nitride nanocomposites[J].Journal of the Ceramic Society of Japan,2008,116(1354):762.
64 Kusunose T, Sakayanagi N, Sekino T, et al. Fabrication and characterization of aluminum nitride/boron nitride nanocomposites by carbothermal reduction and nitridation of aluminum borate powders[J].Journal of Nanoscience and Nanotechnology,2008,8(11):5846.
65 Wilk A, Rutkowski P, Zientara D, et al. Aluminium oxynitride-he-xagonal boron nitride composites with anisotropic properties[J].Journal of the European Ceramic Society,2016,36:2087.
66 Duan X M, Wang M R, Jia D C, et al. Anisotropic mechanical pro-perties and fracture mechanisms of textured h-BN composite cera-mics[J].Materials Science and Engineering: A,2014,607:38.
67 Tong Q F, Zhou Y C, Zhang J, et al. Preparation and properties of machinable Si2N2O/BN composites[J].International Journal of Applied Ceramic Technology,2008,5(3):295.
68 Pei Y C, Li S Q, Yu C Q, et al. Fabrication and proerties of SiO2-BN-Si3N4 composites[J].Rare Metal Materials and Engineering,2009,38(S2):114(in Chinese).
裴雨辰,李淑琴,于长清,等.SiO2-BN-Si3N4系复相陶瓷制备及性能[J].稀有金属材料与工程,2009,38(S2):114.
69 Long N N, Bi J Q, Wang W L, et al. Mechanical properties and microstructure of porous BN-SiO2-Si3N4 composite ceramics[J].Ceramics International,2012,38(3):2381.
70 Zhang Z T, Li W C, Wang X D, et al. Synthesis and characterization of MgAlON-BN composites[J].International Journal of Materials Research,2007,98(1):64.
71 Zhang Z T, Teng L D, Li W C. Mechanical properties and microstructures of hot-pressed MgAlON-BN composites[J].Journal of the European Ceramic Society,2007,27(1):319.
72 Jiang T, Tian C C. Investigation of microstructure and thermal shock resistance of the B4C/BN composites fabricated by hot-pressing process[J].Key Engineering Materials,2012,512-515:748.
73 Smirnov K L. β-SiAlON-BN composites by infiltration-mediated SHS under high pressure of nitrogen gas[J].International Journal of Self-Propagating High-Temperature Synthesis,2016,25(1):17.
74 Neshpor I P, Mosina T V, Grigoriev O N, et al. The mechanical properties of Sialon-noron nitride composite ceramics[J].Powder Metallurgy and Metal Ceramics,2015,53(9-10):574.
75 Li Y J, Ge B Z, Wu Z H, et al. Effects of h-BN on mechanical pro-perties of reaction bonded β-SiAlON/h-BN composites[J].Journal of Alloys and Compounds,2017,703:180.
76 Li Y J, Yu H L, Shi Z Q, et al. Synthesis of β-SiAlON/h-BN nanocomposite by a precursor infiltration and pyrolysis (PIP) route[J].Materials Letters,2015,139:303.
77 Zhao D L, Zhang Y J, Gong H Y, et al. BN nanoparticles/Si3N4 wave-transparent composites with high strength and low dielectric constant[J].Journal of Nanomaterials,2011,2011:1.
78 Wei D Q, Meng Q C, Jia D C. Mechanical and tribological properties of hot-pressed h-BN/Si3N4 ceramic composites[J].Ceramics International,2006,32(5):549.
79 Joshi B, Fu Z Y, Niihara K, et al. Optical, mechanical and tribological properties of boronnitride dispersed silicon nitride ceramics[J].Korean Journal of Materials Research,2010,20(8):444.
80 Jin H. Fabrication and properties of silicon aluminum oxide/hexagonal boron nitride compositeceramics by pressureless sintering[D].Xi’an: Xi’an Jiaotong University,2016(in Chinese).
金汉.硅铝氧化物/六方氮化硼复相陶瓷的常压烧结制备及其性能研究[D].西安:西安交通大学,2016.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[12] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[13] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[14] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed