Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 23110107-6    https://doi.org/10.11896/cldb.23110107
  金属与金属基复合材料 |
SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究
邝亚飞1,2, 李永斌1,2, 张艳1,2, 陈峰华1,2, 孙志刚1,2, 胡季帆1,2,*
1 太原科技大学材料科学与工程学院,太原 030024
2 磁电功能材料及其应用山西省重点实验室,太原 030024
Study on Martensitic Transformation and Mechanical Properties of SPS Sintered Ni-Mn-In Alloys
KUANG Yafei1,2, LI Yongbin1,2, ZHANG Yan1,2, CHEN Fenghua1,2, SUN Zhigang1,2, HU Jifan1,2,*
1 College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Key Laboratory of Magnetoelectric Functional Materials and Applications of Shanxi Province, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 5725KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用放电等离子烧结技术制备了Ni45Co5Mn37In13合金,通过优化热处理工艺以及烧结工艺参数尽可能地消除阻碍马氏体相变的内应力等因素。结果表明,合金粉末经过773 K低温去应力退火,有利于获得6M马氏体结构,6M马氏体结构的存在有利于相变的进行,这主要归因于原子结构有序化、均匀化增强。而退火时间从2 h延长到25 h,合金粉末的马氏体相变行为没有明显的变化,这归因于退火时间对原子扩散以及位错运动的影响较小。随着烧结温度从873 K升高到1 173 K,烧结合金的抗压强度和断裂应变分别提高到1 564 MPa和13.4%,这归因于孔隙的减小、致密度的提高以及晶界强化。总之,通过两次低温去应力退火和一次高温烧结,烧结Ni45Co5Mn37In13合金不仅获得了良好的力学性能,还具有急剧的马氏体相变行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邝亚飞
李永斌
张艳
陈峰华
孙志刚
胡季帆
关键词:  Ni45Co5Mn37In13  放电等离子烧结  退火工艺  马氏体相变  力学性能    
Abstract: The Ni45Co5Mn37In13 alloy was prepared by spark plasma sintering technology. The heat treatment process and sintering process parameters were optimized to eliminate internal stresses that hinder the martensitic transformation as much as possible. The results show that the alloy in the powder state is favored to obtain a 6M martensitic structure after annealing at 773 K. The presence of the 6M martensitic structure facilitates the phase transformation, which is mainly attributed to the enhanced ordering and homogenization in the atomic structure. While the annealing time increases from 2 h to 25 h, there is no obvious change in the martensitic transformation behavior for the alloy in the powder state, which is attributed that annealing time has little effect on the atomic diffusion and the dislocation motion. As the sintering temperature increases from 873 K to 1 173 K, the compressive strength and ultimate strain of the sintered alloys raise to 1 564 MPa and 13.4%, respectively, which is attributed to the reduction of porosity, improvement of densification and strengthening of intergranular boundaries. In a word, by performing two relieved-stress annealing at low temperatures and one high-temperature sintering, the sintered Ni45Co5Mn37In13 alloy not only obtains excellent mechanical properties, but also has a sharp martensitic transformation behavior.
Key words:  Ni45Co5Mn37In13    spark plasma sintering    annealing process    martensitic transformation    mechanical property
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TG139.6  
基金资助: 国家自然科学基金(52301248);山西省基础研究计划项目(202203021222201;202203021212304);来晋工作优秀博士奖励项目(20222057);太原科技大学博士科研启动基金项目(20232051)
通讯作者:  * 胡季帆,太原科技大学材料科学与工程学院特聘教授、博士研究生导师,长江学者,国家“百千万人才工程”第一、第二层次入选者,教育部跨世纪优秀人才,享受国务院政府特殊津贴专家。1985年山东大学物理学专业本科毕业,1988年中国科学院物理研究所凝聚态物理专业硕士毕业,1993年中国科学院物理研究所凝聚态物理专业博士毕业。目前主要从事磁学、永磁、磁相变等稀土功能材料的研究工作。在Advanced Materials、Renewable Energy和Journal of Rare Earths等知名期刊发表论文400多篇。hujifan@tyust.edu.cn   
作者简介:  邝亚飞,2022年毕业于东北大学,工学博士。现为太原科技大学材料科学与工程学院讲师,主要从事磁相变合金在固态制冷方面的研究工作。以第一作者身份在Scripta Materialia、Journal of Alloys and Compounds、Intermetallics等国内外知名SCI期刊发表学术论文5篇,发明专利授权1项。
引用本文:    
邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
KUANG Yafei, LI Yongbin, ZHANG Yan, CHEN Fenghua, SUN Zhigang, HU Jifan. Study on Martensitic Transformation and Mechanical Properties of SPS Sintered Ni-Mn-In Alloys. Materials Reports, 2024, 38(9): 23110107-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110107  或          http://www.mater-rep.com/CN/Y2024/V38/I9/23110107
1 Cazorla C. Applied Physics Reviews, 2019, 6 (4), 041316.
2 Fähler S, Pecharsky V K. MRS Bulletin, 2018, 43 (4), 264.
3 Franco V, Blazquez J S, Ipus J J, et al. Progress in Materials Science, 2018, 93, 112.
4 Karaca H E, Karaman I, Basaran B, et al. Advanced Functional Mate-rials, 2009, 19 (7), 983.
5 Kosugi Y, Goto M, Tan Z, et al. Scientific Reports, 2021, 11 (1), 12682.
6 Li B, Kawakita Y, Ohira-Kawamura S, et al. Nature, 2019, 567, 506.
7 Liu J, Gottschall T, Skokov K P, et al. Nature Materials, 2012, 11 (7), 620.
8 Mañosa L, Planes A. Applied Physics Letters, 2020, 116 (5), 050501.
9 Wei L S, Zhang X X, Qian M F, et al. Materials and Design, 2016, 112, 339.
10 Wang D J, Yuan H, Qiang J M. Metals, 2017, 7 (6), 201.
11 Zhang L, Zhang Y Q, Jiang Y H, et al. Journal of Alloys and Compounds, 2015, 644, 513.
12 Tian X H, Sui J H, Zhang X, et al. Chinese Physics B, 2011, 20 (4), 047503.
13 Wang Z, Matsumoto M, Abe T, et al. Materials Transactions Jim, 1999, 40 (5), 389.
14 Tian X H, Sui J H, Zhang X, et al. Journal of Alloys and Compounds, 2011, 509 (10), 4081.
15 Ito K, Ito W, Umetsu R Y, et al. Scripta Materialia, 2009, 61 (5), 504.
16 Tian B, Ren D C, Tong Y X, et al. Materials Science Forum, 2015, 815, 222.
17 Liu D M, Nie Z H, Ren Y, et al. Metallurgical and Materials Transactions A, 2011, 42 (10), 3062.
18 Qian M F, Zhang X X, Jia Z G, et al. Materials and Design, 2018, 148, 115.
19 Ito K, Ito W, Umetsu R Y, et al. Materials Transactions, 2008, 49 (8), 1915.
20 Maziarz W, Wójcik A, Czaja P, et al. Journal of Magnetism and Magnetic Materials, 2016, 412, 123.
21 Tian B, Chen F, Tong Y X, et al. Journal of Alloys and Compounds, 2011, 509 (13), 4563.
22 Jin X, Marioni M, Bono D, et al. Journal of Applied Physics, 2002, 91 (10), 8222.
23 Ito W, Imano Y, Kainuma R, et al. Metallurgical & Materials Transactions A, 2007, 38 (4), 759.
24 Pérez-Sáez R B, Recarte V, Nó M L, et al. Advanced Engineering Materials, 2000, 2 (1-2), 49.
25 Li Z B. Crystallographic characterization and microstructure control of polycrystalline Ni-Mn-Ga ferromagnetic multi-functional alloys. Ph.D. Thesis, Northeastern University, China, 2013 (in Chinese).
李宗宾. 多晶Ni-Mn-Ga磁控功能合金的晶体学表征与微观组织调控. 博士学位论文, 东北大学, 2013.
26 Huang X M, Wang L D, Liu H X, et al. Intermetallics, 2019, 113, 106579.
27 Li Z Z, Li Z B, Li D, et al. Acta Materialia, 2020, 192, 52.
28 Guan Z Q, Bai J, Zhang Y, et al. Rare Metals, 2022, 41 (6), 1933.
29 Qu Y H, Cong D Y, Sun X M, et al. Acta Materialia, 2017, 134, 236.
30 Feng Y, Gao J Y, Zhou M M, et al. Journal of Magnetism and Magnetic Materials, 2022, 563, 169906.
31 Feng Y, Yuan X Y, Zhou M M, et al. Journal of Alloys and Compounds, 2023, 944, 169143.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[4] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[5] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[6] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[7] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[8] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[9] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[10] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[11] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[12] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[13] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[14] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[15] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed