Study on Martensitic Transformation and Mechanical Properties of SPS Sintered Ni-Mn-In Alloys
KUANG Yafei1,2, LI Yongbin1,2, ZHANG Yan1,2, CHEN Fenghua1,2, SUN Zhigang1,2, HU Jifan1,2,*
1 College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2 Key Laboratory of Magnetoelectric Functional Materials and Applications of Shanxi Province, Taiyuan 030024, China
Abstract: The Ni45Co5Mn37In13 alloy was prepared by spark plasma sintering technology. The heat treatment process and sintering process parameters were optimized to eliminate internal stresses that hinder the martensitic transformation as much as possible. The results show that the alloy in the powder state is favored to obtain a 6M martensitic structure after annealing at 773 K. The presence of the 6M martensitic structure facilitates the phase transformation, which is mainly attributed to the enhanced ordering and homogenization in the atomic structure. While the annealing time increases from 2 h to 25 h, there is no obvious change in the martensitic transformation behavior for the alloy in the powder state, which is attributed that annealing time has little effect on the atomic diffusion and the dislocation motion. As the sintering temperature increases from 873 K to 1 173 K, the compressive strength and ultimate strain of the sintered alloys raise to 1 564 MPa and 13.4%, respectively, which is attributed to the reduction of porosity, improvement of densification and strengthening of intergranular boundaries. In a word, by performing two relieved-stress annealing at low temperatures and one high-temperature sintering, the sintered Ni45Co5Mn37In13 alloy not only obtains excellent mechanical properties, but also has a sharp martensitic transformation behavior.
通讯作者:
* 胡季帆,太原科技大学材料科学与工程学院特聘教授、博士研究生导师,长江学者,国家“百千万人才工程”第一、第二层次入选者,教育部跨世纪优秀人才,享受国务院政府特殊津贴专家。1985年山东大学物理学专业本科毕业,1988年中国科学院物理研究所凝聚态物理专业硕士毕业,1993年中国科学院物理研究所凝聚态物理专业博士毕业。目前主要从事磁学、永磁、磁相变等稀土功能材料的研究工作。在Advanced Materials、Renewable Energy和Journal of Rare Earths等知名期刊发表论文400多篇。hujifan@tyust.edu.cn
作者简介: 邝亚飞,2022年毕业于东北大学,工学博士。现为太原科技大学材料科学与工程学院讲师,主要从事磁相变合金在固态制冷方面的研究工作。以第一作者身份在Scripta Materialia、Journal of Alloys and Compounds、Intermetallics等国内外知名SCI期刊发表学术论文5篇,发明专利授权1项。
引用本文:
邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
KUANG Yafei, LI Yongbin, ZHANG Yan, CHEN Fenghua, SUN Zhigang, HU Jifan. Study on Martensitic Transformation and Mechanical Properties of SPS Sintered Ni-Mn-In Alloys. Materials Reports, 2024, 38(9): 23110107-6.
1 Cazorla C. Applied Physics Reviews, 2019, 6 (4), 041316. 2 Fähler S, Pecharsky V K. MRS Bulletin, 2018, 43 (4), 264. 3 Franco V, Blazquez J S, Ipus J J, et al. Progress in Materials Science, 2018, 93, 112. 4 Karaca H E, Karaman I, Basaran B, et al. Advanced Functional Mate-rials, 2009, 19 (7), 983. 5 Kosugi Y, Goto M, Tan Z, et al. Scientific Reports, 2021, 11 (1), 12682. 6 Li B, Kawakita Y, Ohira-Kawamura S, et al. Nature, 2019, 567, 506. 7 Liu J, Gottschall T, Skokov K P, et al. Nature Materials, 2012, 11 (7), 620. 8 Mañosa L, Planes A. Applied Physics Letters, 2020, 116 (5), 050501. 9 Wei L S, Zhang X X, Qian M F, et al. Materials and Design, 2016, 112, 339. 10 Wang D J, Yuan H, Qiang J M. Metals, 2017, 7 (6), 201. 11 Zhang L, Zhang Y Q, Jiang Y H, et al. Journal of Alloys and Compounds, 2015, 644, 513. 12 Tian X H, Sui J H, Zhang X, et al. Chinese Physics B, 2011, 20 (4), 047503. 13 Wang Z, Matsumoto M, Abe T, et al. Materials Transactions Jim, 1999, 40 (5), 389. 14 Tian X H, Sui J H, Zhang X, et al. Journal of Alloys and Compounds, 2011, 509 (10), 4081. 15 Ito K, Ito W, Umetsu R Y, et al. Scripta Materialia, 2009, 61 (5), 504. 16 Tian B, Ren D C, Tong Y X, et al. Materials Science Forum, 2015, 815, 222. 17 Liu D M, Nie Z H, Ren Y, et al. Metallurgical and Materials Transactions A, 2011, 42 (10), 3062. 18 Qian M F, Zhang X X, Jia Z G, et al. Materials and Design, 2018, 148, 115. 19 Ito K, Ito W, Umetsu R Y, et al. Materials Transactions, 2008, 49 (8), 1915. 20 Maziarz W, Wójcik A, Czaja P, et al. Journal of Magnetism and Magnetic Materials, 2016, 412, 123. 21 Tian B, Chen F, Tong Y X, et al. Journal of Alloys and Compounds, 2011, 509 (13), 4563. 22 Jin X, Marioni M, Bono D, et al. Journal of Applied Physics, 2002, 91 (10), 8222. 23 Ito W, Imano Y, Kainuma R, et al. Metallurgical & Materials Transactions A, 2007, 38 (4), 759. 24 Pérez-Sáez R B, Recarte V, Nó M L, et al. Advanced Engineering Materials, 2000, 2 (1-2), 49. 25 Li Z B. Crystallographic characterization and microstructure control of polycrystalline Ni-Mn-Ga ferromagnetic multi-functional alloys. Ph.D. Thesis, Northeastern University, China, 2013 (in Chinese). 李宗宾. 多晶Ni-Mn-Ga磁控功能合金的晶体学表征与微观组织调控. 博士学位论文, 东北大学, 2013. 26 Huang X M, Wang L D, Liu H X, et al. Intermetallics, 2019, 113, 106579. 27 Li Z Z, Li Z B, Li D, et al. Acta Materialia, 2020, 192, 52. 28 Guan Z Q, Bai J, Zhang Y, et al. Rare Metals, 2022, 41 (6), 1933. 29 Qu Y H, Cong D Y, Sun X M, et al. Acta Materialia, 2017, 134, 236. 30 Feng Y, Gao J Y, Zhou M M, et al. Journal of Magnetism and Magnetic Materials, 2022, 563, 169906. 31 Feng Y, Yuan X Y, Zhou M M, et al. Journal of Alloys and Compounds, 2023, 944, 169143.