Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23060112-7    https://doi.org/10.11896/cldb.23060112
  金属与金属基复合材料 |
Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究
何东青1,*, 冯子涵1, 郑文文1, 李文生1, 尚伦霖1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 中国科学院兰州化学物理研究所,固体润滑国家重点实验室,兰州 730000
High Temperature Tribological Behaviors of Cr3C2-NiCr/AlCrN Duplex Coating
HE Dongqing1,*, FENG Zihan1, ZHENG Wenwen1, LI Wensheng1, SHANG Lunlin1,2
1 State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 14799KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过实验分析和有限元模拟,对比研究了物理气相沉积技术制备的单层AlCrN薄膜和以超音速火焰喷涂Cr3C2-NiCr涂层为中间层的Cr3C2-NiCr/AlCrN复合涂层的微观组织、力学性能以及不同温度下的摩擦磨损行为。结果表明,Cr3C2-NiCr中间层对表层AlCrN薄膜的微观组织和纳米硬度的影响极小,但能避免AlCrN薄膜在承载接触点周围产生的应力集中。相较于单层薄膜,复合涂层的构建实现了材料热膨胀系数由表层AlCrN薄膜向金属基体的梯度过渡,抗热震性能显著提高。摩擦性能方面:在不同温度下复合涂层均表现出低的磨损率。在600 ℃以下,单层薄膜与复合涂层的主要磨损机制均为磨粒磨损;当温度升高至800 ℃时,单层薄膜表面发生严重的开裂及剥落,磨损机制由磨粒磨损转为剥层磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何东青
冯子涵
郑文文
李文生
尚伦霖
关键词:  PVD薄膜  HVOF涂层  复合涂层  应力分布  摩擦学性能    
Abstract: The microstructure, mechanical properties, and tribological behaviors of the single AlCrN film and the Cr3C2-NiCr/AlCrN duplex coating at different temperatures were comparatively studied by experimental analysis and finite element simulation. The results showed that the Cr3C2-NiCr interlayer had minimal effect on the microstructure and nano-hardness of the AlCrN film, but could avoid the stress concentration of the AlCrN film around the contact point. Compared with the single film, constructing the duplex coating achieved a gradient transition of the thermal expansion coefficient of the material from the AlCrN film to the metal substrate, and the thermal shock resistance was significantly improved. In terms of tribological properties, the duplex coating exhibited lower wear rate at different temperatures. Below 600 ℃, the main wear mechanism of the single AlCrN film and Cr3C2-NiCr/AlCrN duplex coating was abrasive wear; when the temperature increased to 800 ℃, the surface of the single film undergone serious cracking and peeling, and the wear mechanism was peeling wear.
Key words:  PVD film    HVOF coating    duplex coating    stress distribution    tribological property
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TH117.1  
基金资助: 国家自然科学基金(52365024);甘肃省自然科学基金(22JR5RA285)
通讯作者:  *何东青,兰州理工大学有色金属先进加工与再利用国家重点实验室副研究员、硕士研究生导师。2012年于兰州交通大学机电工程学院材料科学与工程专业本科毕业,2015年于兰州交通大学机电工程学院材料学专业硕士毕业,2018年中国科学院兰州化学物理研究所材料学专业博士毕业后到兰州理工大学工作至今。目前主要从事润滑与耐磨蚀涂层/薄膜材料及其在苛刻环境下的损伤机理等方面的研究工作。发表论文30余篇,包括Mate-rials & Design、Corrosion Science、Tribology International、Applied Surface Science等。dqhe@lut.edu.cn   
引用本文:    
何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
HE Dongqing, FENG Zihan, ZHENG Wenwen, LI Wensheng, SHANG Lunlin. High Temperature Tribological Behaviors of Cr3C2-NiCr/AlCrN Duplex Coating. Materials Reports, 2024, 38(21): 23060112-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060112  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23060112
1 Chen W L, Lin Y, Zheng J, et al. Surface and Coatings Technology, 2015, 265, 205.
2 Kong D, Fu G, Wang W, et al. Chinese Journal of Vacuum Science and Technology, 2014, 34, 700.
3 Tytko D, Choi P P, Raabe D. Acta Materialia, 2015, 85, 32.
4 Ay V V. Materials Science, 2021, 27(1), 50.
5 Mo J L, Zhu M H. Wear, 2009, 267, 874.
6 Zhao G H, Aune R E, Espallargas N. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 100.
7 Dalibon E L, Charadia R, Cabo A, et al. Surface and Coatings Technology, 2013, 235, 735.
8 Lima-Oliveira D A, Costa R, Martins G V, et al. Open Journal of Metal, 2012, 2(1), 1.
9 He D, Zheng S, Pu J, et al. Tribology International, 2015, 82, 20.
10 Pougoum F, Qian J, Laberge M, et al. Surface and Coatings Technology, 2018, 35, 0699.
11 Wänstrand O, Larsson M, Kassman-Rudolphi Å, Surface and Coatings Technology, 2000, 127, 107.
12 Singh K, Limaye P K, Soni N L, et al. Wear, 2008, 258, 1813.
13 Zhang S, Cui Y C, Hu Z H, et al. Tribology International, 2021, 163, 107132.
14 Cao Y X, Sun J W, Hao B, et al. Hans Journal of Chemical Engineering and Technology, 2018, 8, 336.
15 Bemporad E, Sebastiani M, De Felicis D, et al. Thin Solid Films, 2006, 515(1), 186.
16 Pougoum F, Qian J, Martinu L, et al. Surface and Coatings Technology, 2019, 357, 774.
17 Chen W, Mao T, Zhang S, et al. Surface and Coatings Technology, 2016, 304, 125.
18 Li J, Ding C. Surface and Coatings Technology, 2001, 135, 229.
19 Bales, G. S. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 1991, 9(1),145.
20 Bolelli G, Gualtieri E, Lusvarghi L, et al. Journal of Thermal Spray Technology, 2009, 18(2), 231.
21 Pang X, Yang H, Liu X, et al. Thin Solid Films, 2011, 519, 5831.
22 Zhou W, Zhou K, Li Y, et al. Applied Surface Science, 2017, 416, 33.
23 Guo J X, Zhou Y, Wang T Y, et al. Materials reports, 2022, 36(9), 164 (in Chinese).
郭建新, 周芸, 汪天尧, 等. 材料导报, 2022, 36(9), 164.
24 Xiao B J, Liu J, Liu F, et al. Ceramics International, 2018, 44, 23150.
25 Cai Sheng, Guo Peng, Zuo Xiao, et al. Tribology, 2018, 38(1), 51 (in Chinese)
蔡胜, 郭鹏, 左潇,等. 摩擦学学报, 2018, 38(1), 51.
26 Ning Kexin, Wang Peng, Jiang Haixia, et al. Tribology, 2021, 41(4), 9 (in Chinese)
宁可心, 王鹏, 江海霞, 等.摩擦学学报, 2021, 41(4), 9.
[1] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[2] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[3] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[4] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[5] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[6] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[7] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[8] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[9] 武宏, 邵明增, 杨洪波. 涂镀铝+微弧氧化工艺制备复合涂层研究进展[J]. 材料导报, 2024, 38(14): 23120007-9.
[10] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[11] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[12] 吕丹丹, 李慕荣, 张伟钢. 超疏水PDMS改性聚氨酯/黄铜复合涂层的制备及性能表征[J]. 材料导报, 2023, 37(4): 21060116-6.
[13] 王喜茂, 赵运才, 郭伟玲, 马国政, 王慧鹏, 王海斗. 冷喷涂铜基陶瓷复合涂层沉积机理与结构性能优化研究进展[J]. 材料导报, 2023, 37(24): 22040223-10.
[14] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[15] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed