Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23050178-13    https://doi.org/10.11896/cldb.23050178
  金属与金属基复合材料 |
氨分解制氢钌基催化剂的研究进展
王帆1, 赵宇辰2, 郑文跃1,*
1 北京科技大学国家材料服役安全科学中心,北京 102200
2 中国联合重型燃气轮机技术有限公司,北京 100016
Recent Advances in Research of Ruthenium-based Catalysts for Hydrogen Production from Ammonia Decomposition
WANG Fan1, ZHAO Yuchen2, ZHENG Wenyue1,*
1 National Center of Materials Service Safety, University of Science and Technology Beijing, Beijing 102200, China
2 China United Gas Turbine Technology Co., Ltd., Beijing 100016, China
下载:  全 文 ( PDF ) ( 10104KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢作为一种可持续的资源是未来能源结构的竞争性候选能源。含氢17.6%(质量分数,下同)的氨作为一种极具前景的无碳化氢载体,其制氢成本低,生产效率高,且现场氨分解可以在一定程度上缓解氢储存和运输的难题。目前,已经开发了各种金属基氨分解催化剂,其中钌(Ru)基催化剂因具有合适的Ru-N结合能最为优越。近年来,人们一直致力于提高Ru基催化剂的性能,通过研究多种载体和助剂材料,并采用先进的分析技术揭示催化性能与催化剂微观结构之间的关系,旨在降低Ru的负载量和反应温度,以实现更好的经济效益。本文阐述了不同产氢路径,并对绿氨经济性与国内外企业绿氨项目的建设情况进行了归纳。同时,分析了氨分解反应的基本机理以及动力学和热力学过程,并总结了目前用于氨分解的贵金属Ru基催化剂的研究现状及不同类型载体、助剂对Ru基催化剂催化性能的影响。此外,介绍了氨分解反应器及其老化问题。最后对氨分解催化制氢的改进措施和未来发展方向进行了展望,旨在为“氢-氨”能源发展提供信息支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王帆
赵宇辰
郑文跃
关键词:  氢能  氨分解  机理  催化剂  绿氨经济    
Abstract: As a sustainable resource, hydrogen is considered to be a competitive candidate for future energy consumption. Ammonia is a promising carbon-free hydrogen carrier with a hydrogen content of 17.6wt%. Ammonia decomposition is low-cost and high-efficiency, and on-site ammonia decomposition can to a certain extent serve as a route to hydrogen storage and transportation. Various metal-based ammonia decomposition catalysts have been developed, and ruthenium-based catalysts are superior due to their suitable Ru-N binding energy. In recent years, people have been working to improve the performance of Ru-based catalysts by studying various support and promoter materials. Advanced technology is used to reveal the relationship between catalytic performance and catalyst microstructure to reduce the loading of Ru and the reaction temperature to improve its economicity. This paper describes the different ways to produce hydrogen and summarizes the economics of green ammonia and the construction of green ammonia projects by domestic and international companies. Meanwhile, the mechanism, and kinetic and thermodynamic processes of ammonia decomposition reaction are analyzed. The research progress of noble metal Ru-based catalysts for ammonia decomposition and the effects of different types of carriers and promoters on the catalytic performance of Ru-based catalysts are reviewed. In addition, the ammonia decomposition reactor and its aging issues are introduced. Finally, the improvement measures and future development direction of ammonia decomposition catalytic hydrogen production are prospected, aiming to provide supporting information for the development of ‘hydrogen-ammonia' energy.
Key words:  hydrogen energy    ammonia decomposition    mechanism    catalyst    green ammonia economy
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TQ426  
基金资助: 中国联合重型燃气轮机技术有限公司(J277)
通讯作者:  *郑文跃,通信作者,国家特聘专家,北京科技大学杰出学者,国家材料服役安全科学中心教授、博士研究生导师。1983年毕业于北京钢铁学院,1988年获得英国曼彻斯特大学博士学位。新金属材料国家重点实验室客座教授、CSTM标准委员会材料服役标准分委会会员。曾多年就职于加拿大自然资源部,先后担任焊接与服役完整性室主任、能源材料总监。曾任ISO TC156/SCI全生命周期腐蚀控制标准委员会委员及立项负责人。目前主要研究方向为金属开裂与材料的环境损伤、能源装备中材料的服役性能及先进钢材在油气行业的应用。发表学术专著5部,SCI、EI期刊论文及会议论文100余篇,非公开商业报告30余篇。zheng_wenyue@ustb.edu.cn   
作者简介:  王帆,2022年7月毕业于西安石油大学获得工学硕士学位。现为北京科技大学国家材料服役安全科学中心博士研究生,在郑文跃教授的指导下进行研究。目前主要研究方向为氨分解催化制氢。
引用本文:    
王帆, 赵宇辰, 郑文跃. 氨分解制氢钌基催化剂的研究进展[J]. 材料导报, 2024, 38(19): 23050178-13.
WANG Fan, ZHAO Yuchen, ZHENG Wenyue. Recent Advances in Research of Ruthenium-based Catalysts for Hydrogen Production from Ammonia Decomposition. Materials Reports, 2024, 38(19): 23050178-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050178  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23050178
1 Dawood F, Anda M, Shafiullah G M. International Journal of Hydrogen Energy, 2020, 45, 3847.
2 Pandev M, Lucchese P, Mansilla C, et al. Bulgarian Chemical Communications, 2017, 49, 84.
3 Navlani-García M, Miguel-García I, Berenguer-Murcia Á, et al. Catalysis Science & Technology, 2016, 6, 2623.
4 Gao Z W, Li X G, Liu Z X, et al. Materials Reports, 2022, 36(14), 74 (in Chinese).
高助威, 李小高, 刘钟馨, 等. 材料导报, 2022, 36(14), 74.
5 Li F, Ding X B, Cao Q C, et al. International Journal of Hydrogen Energy, 2022, 47, 3762.
6 Satyapal S, Petrovic J, Read C, et al. Catalysis Today, 2007, 120, 246.
7 El-Shafie M, Kambara S, Hayakawa Y. Journal of the Energy Institute, 2021, 99, 145.
8 Zhou C, Wu K, Huang H W, et al. ACS Catalysis, 2021, 11, 10345.
9 Conte M, Iacobazzi A, Ronchetti M, et al. Journal of Power Sources, 2001, 100, 171.
10 Lucentini I, Garcia X, Vendrell X, et al. Industrial & Engineering Chemistry Research, 2021, 60, 18560.
11 Cao L, Yu I, Xiong X, et al. Environmental Research, 2020, 186, 109547.
12 Chen W H, Biswas P P, Ong H C, et al. Fuel, 2023, 333, 126526.
13 Soltani S M, Lahiri A, Bahzad C, et al. Carbon Capture Science & Technology, 2021, 1, 100003.
14 Chen W H, Chen C Y. Applied Energy, 2020, 258, 114078.
15 Moral G, Ortiz-Imedio R, Ortiz A, et al. Industrial & Engineering Chemistry Research, 2022, 61, 6106.
16 Anwar S, Khan F, Zhang Y, et al. International Journal of Hydrogen Energy, 2021, 46, 32284.
17 Wang S, Lu A, Zhong C J. Nano Convergence, 2021, 8, 1.
18 Liu D B, Su X D, Zhao H L. Materials Reports, 2019, 33(S2), 13 (in Chinese).
刘大波, 苏向东, 赵宏龙. 材料导报, 2019, 33(S2), 13.
19 Pinsky R, Sabharwall P, Hartvigsen J, et al. Progress in Nuclear Energy, 2020, 123, 103317.
20 Holladay J D, Hu J L, King D L, et al. Catalysis Today, 2009, 139, 244.
21 Felderhoff M, Weidenthaler C, Von H R, et al. Physical Chemistry Chemical Physics, 2007, 9, 2643.
22 Yu X, Sandhu N S, Yang Z Y, et al. Applied Energy, 2020, 271, 115169.
23 Klerke A, Christensen C H, Norskov J K, et al. Journal of Materials Chemistry, 2008, 18, 2304.
24 Sun S C, Jiang Q Q, Zhao D Y, et al. Renewable and Sustainable Energy Reviews, 2022, 169, 112918.
25 Teng Y, Yin P B, Nie C F, et al. Oil and Gas Storage and Transportation, 2022, 41(10), 1115 (in Chinese).
滕霖, 尹鹏博, 聂超飞, 等. 油气储运, 2022, 41(10), 1115.
26 Tan H Z, Zhou S K, Yang W J, et al. Chinese Journal of Electrical Engineering, 2023, 43(1), 181.
谭厚章, 周上坤, 杨文俊, 等. 中国电机工程学报, 2023, 43(1), 181.
27 Egerer J, Grimm V, Niazmand K, et al. Applied Energy, 2023, 334, 120662.
28 Perman E P, Atkinson G A S. Proceedings of the Royal Society of London, 1905, 74, 110.
29 Chiuta S, Everson R C, Neomagus H, et al. International Journal of Hydrogen Energy, 2014, 39, 11390.
30 Mccabe R W. Journal of Catalysis, 1983, 79, 445.
31 Armenise S, García-Bordejé E, Valverde J L et al. Physical Chemistry Chemical Physics, 2013, 15, 12104.
32 Ganley, Jason C. Education for Chemical Engineers, 2017, 21, 11.
33 Armenise S, Cazaa F, Monzón A, et al. Fuel, 2018, 233, 851.
34 Yu P, Guo J, Liu L, et al. ChemSusChem, 2016, 9, 364.
35 Robert W. CSC Handbook of chemistry and physics, CRC Press, USA, 1988, pp. 77.
36 Ojelade O A, Zaman S F. Chemical Papers, 2021, 75, 57.
37 Oyama S T. Journal of Catalysis, 1992, 133, 358.
38 Guan J Y, Zhang H H, Su Z K, et al. Chemical Progress, 2022, 41(12), 6319(in Chinese).
关静莹, 张欢欢, 苏子恺, 等. 化工进展, 2022, 41(12), 6319.
39 Ganley J C, Thomas F S, Seebauer E G, et al. Catalysis Letters, 2004, 96, 117.
40 Tsai W, Weinberg W H. Journal of Physical Chemistry, 1987, 91, 5302.
41 He H H, Jiang H J, Yang F Y, et al. International Journal of Hydrogen Energy, 2023, 48, 5030.
42 Lucentini I, Colli G G, Luzi C D, et al. Applied Catalysis B: Environmental, 2021, 286, 119896.
43 Maleki H, Fulton M, Bertola V. Chemical Engineering Journal, 2021, 411, 128595.
44 Kyriakou V, Garagounis I, Vourros A, et al. Joule, 2020, 4, 142.
45 Smith C, Hill A K, Torrente-Murciano L. Energy & Environmental Science, 2020, 13, 331.
46 Schüth F, Palkovits R, Schlögl R, et al. Energy & Environmental Science, 2012, 5, 6278.
47 Makowski P, Thomas A, Kuhn P, et al. Energy & Environmental Science, 2009, 2, 480.
48 Simonsen S B, Chakraborty D, Chorkendorff I, et al. Applied Catalysis A: General, 2012, 447, 22.
49 Egawa C, Nishida T, Naito S, et al. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984, 80, 1595.
50 García-García F R, Guerrero-Ruiz A, Rodríguez-Ramos I. Topics in Catalysis, 2009, 52, 758.
51 Mukherjee S, Devaguptapu S V, Sviripa A, et al. Applied Catalysis B: Environmental, 2018, 226, 162.
52 Ju X H, Liu L, Yu P, et al. Applied Catalysis B: Environmental, 2017, 211, 167.
53 Lucentini I, Casanovas A, Llorca J. International Journal of Hydrogen Energy, 2019, 44, 12693.
54 Huang C Q, Yu Y Z, Yang J M, et al. Applied Surface Science, 2019, 476, 928.
55 Wang Z Q, Qu Y M, Shen X L, et al. International Journal of Hydrogen Energy, 2019, 44, 7300.
56 Hu X C, Fu X P, Wang W W, et al. Applied Catalysis B: Environmental, 2020, 268, 118424.
57 El-Shafie M, Kambara S, Hayakawa Y. Catalysis Today, 2022, 397, 103.
58 Le T A, Kim Y, Kim H W, et al. Applied Catalysis B: Environmental, 2021, 285, 119831.
59 Srifa A, Okura K, Okanishi T, et al. Applied Catalysis B: Environmental, 2017, 218, 1.
60 Pinzón M, Romero A, Lucas-Consuegra A D, et al. Journal of Industrial and Engineering Chemistry, 2021, 94, 326.
61 Kocer T, Oztuna F E S, Kurtolu S F, et al. Applied Catalysis A: General, 2021, 610, 117969.
62 Bell T E, Zhan G W, Wu K J, et al. Topics in Catalysis, 2017, 60, 1251.
63 Marco Y, Roldán L, Armenise S, et al. ChemCatChem, 2013, 5, 3829.
64 Duan X Z, Zhou J H, Gang Q, et al. Chinese Journal of Catalysis, 2010, 31, 979.
65 Chen C, Chen Y W, Ali A M, et al. Chemical Engineering & Technology, 2020, 43, 719.
66 Yin S F, Zhang Q H, Xu B Q, et al. Journal of Catalysis, 2004, 224, 384.
67 Li G, Kanezashi M, Tsuru T. Catalysts, 2017, 7, 23.
68 Zhang R, Gopal M, Jepson W P. In: Corrosion97. New Orleans, 1997, pp. 1403.
69 Yin S F, Xu B Q, Ng C F, et al. Applied Catalysis B: Environmental, 2004, 48, 237.
70 Yin S F, Xu B Q, Wang S J, et al. Catalysis Letters, 2004, 96, 113.
71 Borisov V A, Iost K N, Petrunin D A, et al. Kinetics and Catalysis, 2019, 60, 372.
72 Ng P F, Li L, Wang S B, et al. Environmental Science & Technology, 2007, 41, 3758.
73 Di C A, Vecchione L, Del P Z. International Journal of Hydrogen Energy, 2014, 39, 808.
74 Su Q, Gu L L, Yao Y, et al. Applied Catalysis B: Environmental, 2017, 201, 451.
75 Kurtolu S F, Soyer-Uzun S, Uzun A. Catalysis Today, 2020, 357, 425.
76 Zhang X L, Liu L, Feng J, et al. Catalysis Letters, 2022, 152, 1170.
77 Nagaoka K, Eboshi T, Abe N, et al. International Journal of Hydrogen Energy, 2014, 39, 20731.
78 Zheng C, Guan B, Guo J, et al. Industrial & Engineering Chemistry Research, 2023, 7, 13.
79 Mazzone S, Goklany T, Zhang G, et al. Applied Catalysis A: General, 2022, 632, 118484.
80 Karim A M, Prasad V, Mpourmpakis G, et al. Journal of the American Chemical Society, 2009, 131, 12230.
81 Kim H B, Park E D. Catalysis Today, 2023, 411, 113817.
82 Hu X C, Wang W W, Si R, et al. Science China Chemistry, 2019, 62, 1625.
83 Huang C, Yu Y, Yang J, et al. Applied Surface Science, 2019, 476, 928.
84 Hu X C, Fu X P, Wang W W, et al. Applied Catalysis B: Environmental, 2020, 268, 118424.
85 Guo J, Chen Z, Wu A, et al. Chemical Communications, 2015, 51, 15161.
86 Choudhary T V, Sivadinarayana C, Goodman D W. Catalysis Letters, 2001, 72, 197.
87 Guo J, Chen Z, Wu A, et al. Chemical Communications, 2015, 51, 15161.
88 Bajus S, Agel F, Kusche M, et al. Applied Catalysis A: General, 2016, 510, 189.
89 Wang S J, Yin S F, Li L, et al. Applied Catalysis B: Environmental, 2004, 52, 287.
90 Hill A K, Torrente-Murciano L. International Journal of Hydrogen Energy, 2014, 39, 7646.
91 Devkota S, Shin B J, Mun J H, et al. Fuel, 2023, 342, 127879.
92 Badescu V. International Journal of Energy Research, 2020, 44, 5360.
93 Ma H, Schneider W F. Journal of Catalysis, 2020, 383, 322.
[1] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[2] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[3] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[4] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[5] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[6] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[7] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[8] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[9] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[10] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[11] 付晓辉, 李冠超, 王昱莹, 李小燕, 黄希, 刘小亮, 胡伟芳. 维生素B12改性纳米零价镍去除溶液中U(Ⅵ)的机理[J]. 材料导报, 2024, 38(4): 22040208-6.
[12] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用空心微球制备超轻泡沫玻璃及其性能研究[J]. 材料导报, 2024, 38(4): 22090062-5.
[13] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[14] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[15] 朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed