Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23040229-8    https://doi.org/10.11896/cldb.23040229
  金属与金属基复合材料 |
TixNbMoTaW系高熵合金性能的第一性原理计算
彭超1, 赵勇2, 张芳2, 龙旭3, 林金保1, 常超1,*
1 太原科技大学应用科学学院,太原 030024
2 山西柴油机工业有限责任公司,山西 大同 037036
3 西北工业大学力学与土木建筑学院,西安 710072
First-principles Calculations of Properties of TixNbMoTaW High Entropy Alloys
PENG Chao1, ZHAO Yong2, ZHANG Fang2, LONG Xu3, LIN Jinbao1, CHANG Chao1,*
1 School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Shanxi Diesel Engine Industry Co., Ltd., Datong 037036, Shanxi, China
3 School of Mechanics and Civil Engineering, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 6059KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 NbMoTaW合金是目前研究极广泛的难熔高熵合金之一,具有高熵合金高强度、高硬度、耐磨损的优异性能,但其韧性塑性较差,极大影响了其在工程中的应用。本研究在NbMoTaW合金中添加不同比例的Ti元素以提高该合金的塑韧性,通过相形成参数计算确定了TixNbMoTaW系合金的相结构为固溶体相,运用基于密度泛函理论的第一性原理方法计算合金晶格常数、基态能量、形成能及焓变值,分析了合金结构稳定性。通过计算合金不同Ti含量时弹性常数、弹性模量、B/G、泊松比ν、柯西压C12-C44等参数研究了合金弹性性质的变化规律。最后对电子态密度分析得知,合金体系成键共价性降低,金属键增强,弹性性质和态密度的结果表明添加Ti有助于该合金韧性的提高。此研究可为设计、改善难熔高熵合金性能提供一定设计思路和理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭超
赵勇
张芳
龙旭
林金保
常超
关键词:  难熔高熵合金  第一性原理计算  结构分析  力学性能  TixNbMoTaW    
Abstract: NbMoTaW alloy is one of the most widely studied refractory high entropy alloys. It has the excellent properties of high entropy alloy, high strength, high hardness and wear resistance, but its toughness is poor, which greatly affects its application in engineering. In this study, different proportions of Ti elements were added into NbMoTaW alloy to improve the toughness of the alloy. The phase structure of TixNbMoTaW was determined to be solid solution phase by calculating the phase formation parameters. The crystal lattice constant, formation energy and enthalpy change of the alloy were calculated by the first-principles method based on density functional theory to analyze the structural stability of the alloy. By calculating the elastic constants, elastic modulus, B/G, Poisson ratio ν, Cauchy pressure C12-C44 and other parameters of the alloys with different Ti content, the elastic properties of the alloys were studied. Finally, the electron state density analysis shows that the bonding covalence of the alloy system decreases and the metal bond strengthens. The results of elastic properties and state density show that adding Ti can improve the toughness of the alloy. This study can provide some theoretical guidance and design ideas for designing and improving the properties of refractory high entropy alloys.
Key words:  refractory high entropy alloys    first-principles calculation    structural analysis    mechanical property    TixNbMoTaW
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TG139  
基金资助: 山西省科技合作交流专项项目(202204041101044);太原科技大学研究生教育创新项目(XCX212104)
通讯作者:  * 常超,博士,太原科技大学应用科学学院力学系教授、硕士研究生导师。博士毕业于西班牙马德里理工大学结构、材料与工程专业(国家公派),主要从事微/纳米力学测试技术、冲击动力学、模拟计算等研究工作,近五年以第一作者/通信作者发表文章22篇,发明专利3项。cc@tyust.edu.cn   
作者简介:  彭超,2019年7月于山西大学获得工学学士学位。现为太原科技大学应用科学学院硕士研究生。目前主要研究方向为基于第一性原理高熵合金性能的计算研究。
引用本文:    
彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
PENG Chao, ZHAO Yong, ZHANG Fang, LONG Xu, LIN Jinbao, CHANG Chao. First-principles Calculations of Properties of TixNbMoTaW High Entropy Alloys. Materials Reports, 2024, 38(15): 23040229-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040229  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23040229
1 Jiang R, Song Y D, Reed P A. International Journal of Fatigue, 2020, 141, 105887.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Cantor B, Chang I T H, Knight P, et al. Materials Science and Engineering:A, 2004, 375, 213.
4 Ding Q, Zhang Y, Chen X, et al. Nature, 2019, 574(7777), 223.
5 George E P, Raabe D, Ritchie R O. Nature Reviews Materials, 2019, 4(8), 515.
6 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
7 Ye Y F, Wang Q, Lu J, et al. Materials Today, 2016, 19(6), 349.
8 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
9 Senkov O N, Wilks G B, Miracle D B, et al. Intermetallics, 2010, 18(9), 1758.
10 Senkov O N, Miracle D B, Chaput K J, et al. Journal of Materials Research, 2018, 33(19), 3092.
11 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19(5), 698.
12 Cao P, Ni X, Tian F, et al. Journal of Physics:Condensed Matter, 2015, 27(7), 075401.
13 Feng X B, Zhang J Y, Wang Y Q, et al. International Journal of Plasticity, 2017, 95, 264.
14 Qi L, Chrzan D C. Physical Review letters, 2014, 112(11), 115503.
15 Sheikh S, Bijaksana M K, Motallebzadeh A, et al. Intermetallics, 2018, 97, 58.
16 Xu Q, Chen D, Tan C, et al. Journal of Materials Science & Technology, 2021, 60, 1.
17 Wang B, Wang Q, Lu N, et al. Journal of Materials Science & Technology, 2022, 123, 191.
18 Dirras G, Lilensten L, Djemia P, et al. Materials Science and Engineering:A, 2016, 654, 30.
19 Liu X W, Bai Z C, Ding X F, et al. Materials Letters, 2021, 287, 129255.
20 Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Materials Letters, 2015, 142, 153.
21 Chen S Y, Yang X, Dahmen K A, et al. Entropy, 2014, 16(2), 870.
22 Shao L, Yang M, Ma L, et al. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105451.
23 Chan K S. Metallurgical and Materials Transactions A, 2001, 32, 2475.
24 Tian F, Varga L K, Chen N, et al. Journal of Alloys and Compounds, 2014, 599, 19.
25 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
26 Payne M C, Teter M P, Allan D C, et al. Reviews of Modern Physics, 1992, 64(4), 1045.
27 Leung T C, Chan C T, Harmon B N. Physical Review B, 1991, 44(7), 2923.
28 Cooper A S. Acta Crystallographica, 1962, 15(6), 578.
29 Li X J, Sun K, Chen C, et al. Journal of Xi'an Jiaotong University, 2022, 56(3), 180(in Chinese).
李雪洁, 孙琨, 陈诚, 等. 西安交通大学学报, 2022, 56(3), 180.
30 Nutor R K, Cao Q, Wang X, et al. Advanced Engineering Materials, 2020, 22(11), 2000466.
31 Senkov O N, Miller J D, Miracle D B, et al. Nature Communications, 2015, 6(1), 6529.
32 Guo S, Ng C, Lu J, et al. Journal of Applied Physics, 2011, 109(10), 103505.
33 Chen R, Qin G, Zheng H, et al. Acta Materialia, 2018, 144, 129.
34 Zhang Y, Zhou Y J, Lin J P, et al. Advanced Engineering Materials, 2008, 10(6), 534.
35 Lee C, Chou Y, Kim G, et al. Advanced Materials, 2020, 32(49), 2004029.
36 Lee C, Song G, Gao M C, et al. Acta Materialia, 2018, 160, 158.
37 Song H, Tian F, Hu Q M, et al. Physical Review Materials, 2017, 1(2), 023404.
38 Qing G. Correlation between valence electron concentration and microstructure properties of high entropy alloys. Ph. D. Thesis, Harbin Institute of Technology, China, 2020(in Chinese).
秦刚. 高熵合金价电子浓度与组织性能的相关性. 博士学位论文, 哈尔滨工业大学, 2020.
39 Dean J A. Rann handbook of chemistry:13th edition, Science Press, China, 1991(in Chinese).
迪安. 兰氏化学手册:第13版, 科学出版社, 1991.
40 Bulanova M, Fartushna I, Meleshevich K, et al. Journal of Alloys and Compounds, 2014, 598, 61.
41 Dryś M, Sosnowski J, Folcik L. Journal of the Less Common Metals, 1979, 68(2), 175.
42 Xie R, Li Y, Liu H, et al. Journal of Alloys and Compounds, 2017, 691, 378.
43 Edwards J W, Speiser R, Johnston H L. Journal of Applied Physics, 1951, 22(4), 424.
44 Shah J S, Straumanis M E. Journal of Applied Physics, 1971, 42(9), 3288.
45 He Q, Yu B, Li Z, et al. Energy & Environmental Materials, 2019, 2(4), 264.
46 Ding C, Gao Z J, Hu X, et al. Journal of Atomic and Molecular Physics, 2022, 39(5), 154(in Chinese).
丁璨, 高振江, 胡兴, 等. 原子与分子物理学报, 2022, 39(5), 154.
47 Nong Z S, Zhu J C, Zhao R D. Intermetallics, 2017, 86, 134.
48 Born M. Mathematical proceedings of the cambridge philosophical society, Cambridge University Press, UK, 1940, pp.160.
49 Mouhat F, Coudert F X. Physical Review B, 2014, 90(22), 224104.
50 Wu Z, Zhao E, Xiang H, et al. Physical Review B, 2007, 76(5), 054115.
51 Chen Y, Xue Z, Zhang S, et al. Materials Chemistry and Physics, 2020, 248, 122891.
52 Laplanche G, Birk T, Schneider S, et al. Acta Materialia, 2017, 127, 143.
53 Ranganathan S I, Murshed M R, Costa L. Acta Mechanica, 2018, 229(6), 2631.
54 Han Z D, Chen N, Zhao S F, et al. Intermetallics, 2017, 84, 153.
55 Born M, Huang K, Lax M. American Journal of Physics, 1955, 23(7), 474.
56 Pugh S F. Dublin Philosophical Magazine and Journal of Science, 1954, 45(367), 823.
57 Hu Y L, Bai L H, Tong Y G, et al. Journal of Alloys and Compounds, 2020, 827, 153963.
58 Miracle D B, Senkov O N, Wilks G B, et al. In:Air Force Research Lab Wright-Patterson Afb Oh Materials and Manufacturing Directorate. USA, 2010.
59 Hu G X, Cai X, Rong Y H, et al. Fundamentals of materials science, Shanghai Jiao Tong University Press, China, 2010, pp.87(in Chinese).
胡赓祥, 蔡珣, 戎咏华, 等. 材料科学基础, 上海交通大学出版社, 2010, pp.87.
60 Song Q G, Qin G S, Yang B B, et al. Journal of Physics, 2016, 65(4), 244(in Chinese).
宋庆功, 秦国顺, 杨宝宝, 等. 物理学报, 2016, 65(4), 244.
61 Xu J, Freeman A J. Physical Review B, 1989, 40(17), 11927.
62 Carlsson A E, Meschter P J. Journal of Materials Research, 1989, 4(5), 1060.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[11] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[12] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed