Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23050131-12    https://doi.org/10.11896/cldb.23050131
  金属与金属基复合材料 |
高熵复合材料微观结构、力学性能及耐磨性研究进展
朱志彬, 蒋丽*, 李艳辉, 张伟
大连理工大学材料科学与工程学院,辽宁 大连 116024
Research Progress in Microstructure, Mechanical Properties and Wearing Resistance of High Entropy Composites
ZHU Zhibin, JIANG Li*, LI Yanhui, ZHANG Wei
School of Materials Science and Engineering,Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 18343KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自2004年以来,高熵合金因其独特的成分设计理论、微观结构以及优异的力学性能、高温稳定性、耐磨性和抗辐照性能等引起越来越多学者的关注,有望应用于核电站、航空航天等重要领域及重大装备。而在高熵合金中加入适量的增强相,或者将高熵合金作为增强相添加到金属基体中制备的高熵复合材料可以进一步提高材料的性能。与传统复合材料相比,高熵复合材料不仅克服了界面稳定性差的问题,还显示出优异的强塑性结合,因此近年来高熵复合材料逐渐成为复合材料领域研究的热点。基于此,本文简要介绍了近年来高熵复合材料的研究进展,分别从高熵复合材料的制备方法、微观结构、力学性能和耐磨性等方面进行了讨论,最后总结了高熵复合材料目前存在的一些问题,并对其未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱志彬
蒋丽
李艳辉
张伟
关键词:  高熵复合材料  微观结构  力学性能  耐磨性    
Abstract: Since 2004, high entropy alloys (HEAs) have attracted more and more scholars' attention due to their unique composition design theory, microstructure, excellent mechanical properties, high temperature stability, wearing resistance and radiation resistance. HEAs are expected to be used in nuclear power plants, aerospace and other important fields and major equipment. High entropy composites (HECs), which are prepared by adding an appropriate amount of reinforced-phase to HEAs or adding HEAs as reinforced-phase to metal matrix, can further improve the properties of HEAs. Compared with traditional composites, HECs can overcome the problem of poor interfacial stability, also, they usually display excellent combination of strength and plasticity. Therefore, HECs have become the research focus of composite field in recent years. Based on this, the research progress of HECs, including fabrication, microstructural characterization, mechanical properties and wearing resistance were concluded in this review. Finally, the existing problems of HECs are summarized and their future development is also prospected.
Key words:  high entropy composites    microstructure    mechanical property    wearing resistance
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TG131  
基金资助: 国家自然科学基金(52101036)
通讯作者:  * 蒋丽,大连理工大学材料科学与工程学院副教授、博士研究生导师。2016年6月于大连理工大学获得博士学位。目前主要从事高熵合金、纳米材料等新型材料的研发,关注材料的抗辐照性能、力学性能、磁性能等。发表SCI论文50余篇,总引用3 000余次。主持国家自然科学基金青年基金1项、省部级项目2项、大连市项目1项、校级项目2项。jiangli@dlut.edu.cn   
作者简介:  朱志彬,2021年6月于太原科技大学获得工学学士学位。现为大连理工大学材料科学与工程学院硕士研究生,在蒋丽副教授的指导下进行研究。目前主要研究领域为高熵合金的微观组织、力学性能以及磁性能。
引用本文:    
朱志彬, 蒋丽, 李艳辉, 张伟. 高熵复合材料微观结构、力学性能及耐磨性研究进展[J]. 材料导报, 2024, 38(14): 23050131-12.
ZHU Zhibin, JIANG Li, LI Yanhui, ZHANG Wei. Research Progress in Microstructure, Mechanical Properties and Wearing Resistance of High Entropy Composites. Materials Reports, 2024, 38(14): 23050131-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050131  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23050131
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
2 Huang L F, Sun Y N. Materials Reports, 2023, 37(20), 22030168(in Chinese).
黄留飞, 孙耀宁.材料导报, 2023, 37(20), 22030168.
3 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
4 Tsai M H, Yeh J W. Materials Research Letters, 2014, 2, 107.
5 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
6 Ye Y F, Wang Q, Lu J, et al. Materials Today, 2016, 19, 349.
7 Lu S H. Study on the microstructure and properties of in situ high entropy alloys matrix composite. Master's Thesis, Harbin Institute of Technology, China, 2008 (in Chinese).
卢素华. 原位自生高熵合金基复合材料组织及性能研究. 硕士学位论文, 哈尔滨工业大学, 2008.
8 Wang C. Synthesis and design of multi-principal elements high-entropy alloy coating on Fe alloy. Master's Thesis, Shenyang University of Techno-logy, China, 2014 (in Chinese).
王超. Fe基合金表面多主元高熵合金涂层的设计与制备. 硕士学位论文, 沈阳工业大学, 2014.
9 Wang Z W, Yuan Y B, Zheng R X, et al. Transactions of Nonferrous Metals Society of China, 2014, 24, 2366.
10 Zhang M C, Guo R P, Zhang Y. Materials Reports, 2024, 38(4), 22060288(in Chinese).
张明晨, 郭瑞鹏, 张勇.材料导报, 2024, 38(4), 22060288.
11 Ke B R, Sun Y C, Zhang Y, et al. International Journal of Minerals Metallurgy and Materials, 2021, 28, 931.
12 Li T C, Liu B, Liu Y, et al. Entropy, 2018, 20, 517.
13 Fan Q C, Li B S, Zhang Y. Materials Science and Engineering A, 2014, 598, 244.
14 Yuan Z W, Ma Z, Shen Q Y, et al. Materials China, 2022, 41(5), 331 (in Chinese).
袁战伟, 马哲, 沈秋燕, 等. 中国材料进展, 2022, 41(5), 331.
15 Chiu C, Chang H H. Materials, 2021, 14, 6520.
16 Gao C Q, Wang Q B, Wei M Y, et al. Metals, 2022, 12, 851.
17 Liu Y Z, Chen J, Wang X H, et al. Journal of Materials Research and Technology, 2021, 15, 4117.
18 Han C Y, Sun Y N, Xu Y F, et al. Rare Metal Materials and Enginee-ring, 2022, 51(2), 607 (in Chinese).
韩晨阳,孙耀宁,徐一飞,等. 稀有金属材料与工程, 2022, 51(2), 607.
19 Song Z K, Wu H Y, Long W, et al. Transactions of Materials and Heat Treatment, 2022, 43(7), 28 (in Chinese).
宋之锴,吴浩宇,龙威,等. 材料热处理学报, 2022, 43(7), 28.
20 Guo N N, Wang L, Luo L S, et al. Intermetallics, 2016, 69, 74.
21 Wei Q Q, Luo G Q, Zhang J, et al. Journal of Alloys and Compounds, 2020, 818, 152846.
22 Wang H J, Wu Z Y, Wu H, et al. Transactions of the Indian Institute of Metals, 2021, 74, 267.
23 Huang S R, Wu H, Chen Y J, et al. Composites Communications, 2023, 38, 101510.
24 Zhu L D, Xue P S, Lan Q, et al. Optics and Laser Technology, 2021, 138, 106915.
25 Li Y T, Wang K M, Fu H G, et al. Applied Surface Science, 2022, 585, 152703.
26 Xu L F, Li M X, Song Z H, et al. Nanomaterials, 2022, 12, 1013.
27 Chinababu M, Naga Krishna N, Sivaprasad K, et al. Materials, 2022, 15, 230.
28 Luo K G, Liu S L, Xiong H Q, et al. Metals and Materials International, 2022, 28, 2811.
29 Gu H, Li Z D, Luo K G, et al. Acta Metallurgica Sinica-English Letters, 2022, 35, 879.
30 Chen J, Niu P Y, Wei T, et al. Journal of Alloys and Compounds, 2015, 649, 630.
31 Zhu T, Wu H, Zhou R, et al. Metals, 2020, 10, 387.
32 Li D S, Chen K, Fu X Q, et al. Materials and Corrosion, 2022, 73, 1676.
33 Li Y L, Zhao Y, Shen L, et al. Journal of Iron and Steel Research International, 2021, 28, 496.
34 Popescu G, Matara M A, Csaki I, et al. IOP Conf. Series: Materials Science and Engineering, 2016, 133, 012008.
35 Li J B, Gao B, Wang Y T, et al. Journal of Alloys and Compounds, 2019, 792, 170.
36 Gomez-Esparza C D, Duarte-Moller A, Lopez-Diaz De Leon C, et al. International Journal of Minerals Metallurgy and Materials, 2019, 26, 1467.
37 Wang B J, Wang Q Q, Lu N, et al. Journal of Materials Science & Technology, 2022, 123, 191.
38 Wang C L, Gao Y, Wang R, et al. Journal of Alloys and Compounds, 2018, 740, 1099.
39 Cui C, Wu M P, Miao X J, et al. Journal of Alloys and Compounds, 2022, 890, 161526.
40 Cheng Q Q, Chen J L, Yi G W, et al. Journal of Alloys and Compounds, 2023, 938, 168518.
41 Wei Q Q, Shen Q, Zhang J, et al. Journal of Alloys and Compounds, 2019, 777, 1168.
42 Luo K G, Wu Y Z, Zhang Y, et al. Metals, 2022, 12, 625.
43 Luo K G, Xiong H Q, Zhang Y, et al. Journal of Alloys and Compounds, 2022, 893, 162370.
44 Ananiadis E, Argyris K T, Matikas T E, et al. Applied Sciences-Basel, 2021, 11, 1300.
45 Satyanarayana P V, Sokkalingam R, Jena P K, et al. Metals, 2019, 9, 992.
46 Kumar A, Singh A, Suhane A. Journal of Materials Research, 2022, 37, 2961.
47 Zhou S Q, Liu X Y, Xu Y. Materials, 2018, 11, 1850.
48 Yang S F, Wen J A, Mo J, et al. Materials Science-Medziagotyra, 2021, 27, 289.
49 Lu T W, He T B, Li Z X, et al. Journal of Materials Research and Technology, 2020, 9, 13646.
50 Vyas A, Menghani J, Natu H. Journal of Materials Engineering and Performance, 2021, 30, 2449.
51 Zhao C M, Zhu H G, Xie Z H. Intermetallics, 2022, 140, 107398.
52 Rogal L, Kalita D, Litynska-Dobrzynska L. Intermetallics, 2017, 86, 104.
53 Rogal L, Kalita D, Tarasek A, et al. Journal of Alloys and Compounds, 2017, 708, 344.
54 Pritima P D, Veerapppan G, Ravichandran M, et al. Silicon, 2023, 15, 4637.
55 Yang S F, Pi J H, Yang W, et al. Materials Letters, 2018, 214, 50.
56 Li X F, Fu A, Cao Y K, et al. Journal of Alloys and Compounds, 2022, 894, 162414.
57 Chen H, Chen W, Liu X Q, et al. Materials Science and Engineering A, 2018, 719, 192.
58 Chen J M, Jiang X S, Sun H L, et al. Journal of Materials Engineering and Performance, 2023. http://doi.org/10.1007/s11665-022-07690-8.
59 Huang S R, Wu H, Zhu H G, et al. Materials Letters, 2021, 283, 128918.
60 Wu J, Qiu H, Zhu H G, et al. Materials Letters, 2022, 311, 131495.
61 Zhang J F, Jia T, Zhu H G, et al. Materials Science and Engineering A, 2021, 822, 141671.
62 Huang S R, Wu H, Zhu H G, et al. Intermetallics, 2022, 148, 107639.
63 Shen L, Zhao Y, Li Y L, et al. Materials Today Communications, 2021, 26, 101729.
64 Deng L, Bai C Y, Jiang Z T, et al. Materials Science and Engineering A, 2021, 822, 141642.
65 Wu H, Huang S R, Zhao C M, et al. Intermetallics, 2020, 127, 126729.
66 Wu H, Huang S R, Zhu C Y, et al. Materials Letters, 2019, 257, 126729.
67 Tun K S, Gupta M. Journal of Alloys and Compounds, 2019, 810, 151909.
68 Li G R, Wen H R, Wang H M, et al. Journal of Alloys and Compounds, 2021, 861, 158439.
69 Li Q L, Qiao Z B, Bao X P, et al. Journal of Materials Engineering and Performance, 2022, 31, 6697.
70 Wang Z J, Zhou S J, Shao P Z, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2022, 37, 1.
71 Yuan Z W, Tian W B, Li F G, et al. Journal of Alloys and Compounds, 2020, 822, 153658.
72 Zhang Y, Lei G, Luo K G, et al. Tribology International, 2022, 175, 107868.
73 Yan Y W, Li G R, Ren W X, et al. Journal of Alloys and Compounds, 2022, 900, 163393.
74 Chen J Q, Li K W, Dong P, et al. Proceedings of the Institution of Mechanical Engineers Part L-Journal of Materials-Design and Applications, 2022, 236, 2074.
75 Wang N R, Wu B, Wu W L, et al. Materials Today Communications, 2020, 25, 101366.
76 Gao L P, Li G R, Wang H M, et al. Materials Characterization, 2022, 189, 111993.
77 Wang H, Ren W, Li G, et al. Materials Science and Engineering A, 2021, 801, 140406.
78 Wang Z W, Yuan Y B, Zheng R X, et al. Transactions of Nonferrous Metals Society of China, 2014, 24, 2366.
79 Zhang Y, Li X Q, Gu H, et al. Materials Characterization, 2021, 182, 111548.
80 Chen W P, Li Z X, Lu T W, et al. Materials Science and Engineering A, 2019, 762, 138116.
81 Li Z D, Zhang Y, Xiong H Q, et al. Materials and Manufacturing Processes, 2022, 37, 90.
82 Li Q L, Bao X P, Zhao S, et al. International Journal of Metalcasting, 2021, 15, 281.
83 Archard J F. Journal of Applied Physics, 1953, 24, 981.
84 Guo Z M, Zhang A J, Han J S, et al. Tribology International, 2020, 151, 106436.
85 Li X F, Feng Y H, Liu B, et al. Journal of Alloys and Compounds, 2019, 788, 485.
86 Liang G, Jin G, Cui X F, et al. Applied Surface Science, 2022, 572, 151407.
87 Jin B Q, Zhang N N, Yin S. Journal of Materials Science & Technology, 2022, 121, 163.
88 Geng Y S, Tan H, Cheng J, et al. Tribology International, 2020, 151, 106444.
89 Wang L, Geng Y S, Kiet Tieu A, et al. Composites Part B, 2021, 221, 109032.
90 Pandian V, Kannan S. Journal of Manufacturing Processes, 2022, 74, 383.
91 Li Q L, Bao X P, Fan C L, et al. International Journal of Metalcasting, 2022, 16, 871.
92 Moazami-Goudarzi M, Akhlaghi F. Tribology International, 2016, 102, 28.
93 Yu H Y, Fang W, Chang R B, et al. Transactions of Nonferrous Metals Society of China, 2019, 29, 2331.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[5] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[6] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[9] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[10] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[11] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[12] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[13] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[14] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[15] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed