Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23020237-6    https://doi.org/10.11896/cldb.23020237
  高分子与聚合物基复合材料 |
短切CF/PEEK复合材料的制备及抗紫外老化性能
朱昊, 李勇*, 还大军
南京航空航天大学材料科学与技术学院,南京 210016
Preparation and Ultraviolet Aging Resistance of Chopped CF/PEEK Composites
ZHU Hao, LI Yong*, HUAN Dajun
School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 4887KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CF/PEEK复合材料因轻质高强、耐腐蚀抗老化等特点,在各领域中被广泛应用,而其在成型过程中不可避免地会产生边料、废料,因此针对CF/PEEK回收再利用的研究很有意义。由于PEEK熔点高、溶体粘度大等特点,此类材料回收再利用困难,本工作通过添加一定量的PEEK树脂粉末的方法,改善短切预浸料的热压工艺性,通过紫外线加速老化实验,研究紫外老化对复合材料微观形貌、力学性能等的影响,并结合主成分分析法综合评价短切CF/PEEK复合材料的抗紫外老化性能,为热塑性预浸料和热塑性复合材料制品的回收再利用提供参考。研究结果表明:添加了树脂粉末的复合材料表面质量和力学性能得到明显的提高。试样表面的树脂基体在紫外老化作用下会出现粉化开裂并逐渐脱落的现象,在表面形成孔洞、裂纹等缺陷,紫外老化时间越长,复合材料表面受损越严重,力学性能下降越明显。通过主成分分析法得到,树脂添加量对短切CF/PEEK复合材料的抗紫外老化性能影响不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱昊
李勇
还大军
关键词:  短切预浸料  聚醚醚酮(PEEK)  碳纤维增强  抗紫外老化性能    
Abstract: CF/PEEK composite is widely used in various fields because of its light weight, high strength, corrosion resistance, aging resistance and other characteristics, and it will inevitably produce leftovers and waste materials in the molding process, so it is very meaningful to study the recycling of CF/PEEK. Due to the high melting point and high viscosity of PEEK solution, it is difficult to recycle and reuse such materials. In this work, by adding a certain amount of PEEK resin powder, the hot-pressing process of short-cut prepreg is improved, and the effect of ultraviolet aging on the micro-morphology and mechanical properties of the composite is studied by ultraviolet accelerated aging test, and the anti-ultraviolet aging performance of chopped CF/PEEK composite is comprehensively evaluated by principal component analysis, It provides a reference for the recycling of thermoplastic prepreg and thermoplastic composite products. The results showed that the surface quality and mechanical properties of the composite with resin powder were significantly improved. The resin matrix on the surface of the sample will appear powdery cracking and gradually fall off under the action of ultraviolet aging, and defects such as holes and cracks will be formed on the surface. The longer the ultraviolet aging time is, the more serious the damage on the surface of the composite is, and the more obvious the decline in mechanical properties is. According to the principal component analysis, the amount of resin added has little effect on the ultraviolet aging resistance of chopped CF/PEEK composites.
Key words:  chopped prepreg    PEEK    carbon fiber reinforced    UV aging resistance
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TB332  
通讯作者:  * 李勇,南京航空航天大学材料科学与技术学院教授、博士研究生导师,一直从事先进复合材料自动化成形工艺及装备、复合材料三维增强技术等研究工作,在国内外学术期刊上发表论文150余篇,参编出版著作2部(其中教材1部),先后获得国防科学技术一等奖1项、教育部科学技术二等奖1项和国防科学技术三等奖1项,获得授权发明专利39项、软件著作权登记9项。lyong@nuaa.edu.cn   
作者简介:  朱昊,2020年6月、2023年4月分别于合肥工业大学和南京航空航天大学获得工学学士学位和工学硕士学位。硕士期间在李勇教授的指导下进行研究。目前主要研究领域为先进复合材料。
引用本文:    
朱昊, 李勇, 还大军. 短切CF/PEEK复合材料的制备及抗紫外老化性能[J]. 材料导报, 2024, 38(14): 23020237-6.
ZHU Hao, LI Yong, HUAN Dajun. Preparation and Ultraviolet Aging Resistance of Chopped CF/PEEK Composites. Materials Reports, 2024, 38(14): 23020237-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020237  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23020237
1 Tang S, Hu C, Metal I O, et al. Journal of Materials Science and Technology, 2017, 33(2), 117.
2 Machado J J M, Gamarra M R, Marques E A S, et al.Composite Structures, 2018, 185(2), 373.
3 Onwudili J A, Miskolczi N, Nagy T, et al.Composites Part B: Enginee-ring, 2016, 91(4), 154.
4 Kundalwal S I, Ray M C. Mechanics of Materials, 2012, 53, 47.
5 Zhang G T, Chen W G, Tang G Y.Fiber composites, 2010(1), 31(in Chinese).
张国腾, 陈蔚岗, 唐桂云. 纤维复合材料, 2010(1), 31.
6 Tang H Y, Wang J H, Xu P Y.Ship and Boat, 2006(2) , 6(in Chinese).
唐红艳, 王继辉, 徐鹏遥. 船舶, 2006(2) , 6.
7 Shi J, Huang Z.Fiber reinforced plastics/Composites, 2012(S1), 269(in Chinese).
施军, 黄卓. 玻璃钢/复合材料, 2012(S1), 269.
8 Pimenta S, Pinho S T. Waste Manag, 2011, 31(2), 378.
9 Piekering S J. Coposites part a-Applied Science and Manufacturing, 2006, 37(8), 1206.
10 Goracy A. Mekhanika Kompozitnykh Materialov, 1994, 29(4), 352.
11 Marsh G. Reinforced Plastics, 2009(53), 22.
12 Aymonier C. Infos Polymeres, 2009(67), 235.
13 Swati V, Bhuvaneshwari B, Kumar G R. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 86.
14 Meng F, Elsa O, Zhao Y, et al. ACS Sustainable Chemistry and Engineering, 2018, 6, 9854.
15 Oliveux G, Luke O D, Gary L A. Progress in Materials Science, 2015, 72, 61.
16 Loris G, Chiara L, Laura M, et al. FME Transactions, 2016, 44(4), 405.
17 Yan L, Jie L, Jiang Z, et al. Polymer Degradation and Stability, 2012, 97(3), 214.
18 Jie L, Wang K, Ma L, et al. The Journal of Supercritical Fluids, 2016, 107, 605.
19 Jiang J, Deng G, Chen X, et al. Composites Science and Technology, 2017, 151, 243.
20 Sun H, Guo G, Memon S A, et al. Composites Part A: Applied Science and Manufacturing, 2015, 78, 10.
21 Shi Z M, Zou C, Zhou F Y, et al. Pressure Vessel Technology, 2022, 39(5), 8(in Chinese).
时中猛, 邹超, 周飞宇, 等. 压力容器, 2022, 39(5), 8.
22 Awaja F, Pigram P J. Polymer Degradation and Stability, 2009, 94(4), 651.
23 Fu C Y, Ni A Q, Wang J H, et al.Composite Materials and Engineering, 2020, 318(7), 74(in Chinese).
付晨阳, 倪爱清, 王继辉, 等. 复合材料科学与工程, 2020, 318(7), 74.
24 Goel A, Chawla K K, Vaidya U K, et al. Journal of Materials Science, 2008, 43(13), 4423.
[1] 关洪达, 张涛, 何新波. C/SiC陶瓷基复合材料研究与应用现状[J]. 材料导报, 2023, 37(16): 21090178-10.
[2] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[3] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[4] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[5] 谢桂华, 孙悦, 严鹏, 刘炀, 翁煜. 湿/热条件下的CFRP筋粘结型锚具性能研究[J]. 材料导报, 2020, 34(22): 22178-22184.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed